








Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
Homework Set # 12 for the class Linear Programs & Network Flows
Typology: Exercises
1 / 14
This page cannot be seen from the preview
Don't miss anything!
(b) Determine the total slack and free float (free slack) of each activity.(a) Determine the EST, EFT, LST, LFT of each activity.
Solution:time reduction for activity Let ti the start time for activity i. i, and let xi be the number of units of min s.t. (^300) tA โx Atstart + 200 โฅ x 0 B + 350xC + 260xD + 320xE t tBC โโ starttA โฅ 20 โฅ (^0) โ xA t tDE (^) โโ (^) ttBC โฅโฅ (^2550) โโ xxCB t tEf inish โ tD โ โฅ tE (^40) โฅ โ 30 x Dโ xE t tstartf inish = 0 โค 90 00 โคโค xxAB โคโค (^55) 00 โคโค xxCD โคโค (^55) 0 โค xE โค 5
(b) Suppose that instead of meeting the deadline exactly, there is a penalty of $290 for eachday the project extends beyond 90 days. In addition, there is a reward of $250 for everyday the project finishes under 90 days. Write two (or one) linear programming problems to determine by how much to expedite the duration of each activity in order to minimizethe net cost. Solution: We use two linear programs:
the objective function min Solution: Let ti the start time for activity tf inish โ tstart and remove the constraint that i, and let xi be the number of units of tstart = 0. time reduction for activity i. min s.t. ttf inishA โ t (^) startโ tstart โฅ 0 (xsa) t tBC โโ starttA โฅ 20 โฅ (^0) (x(xacsb)) t tDE โโ (^) ttCB โฅโฅ 2550 ((xxcebd)) t tEf inish โ tD โ โฅ tE (^40) โฅ 30 (x de()xef )
(b) Write the dual problem. Solution: max s.t. (^20) โx xacsa + 25 โ xsbxbd = + 50 โ 1 xce + xde xsa โ xac = 0 x xsbac โโ xxbdce = 0= 0 x xbdce โ+ xxdede โ= 0 xef = 0 x xefsa (^) , x= 1sb, xac, xbd, xce, xde, xef โฅ 0 (c) Which problem does the dual correspond to? Solution: After multiplying each flow balance constraint with โ1, we obtain: max s.t. (^20) xsax ac+ + 25xsb = 1xbd + 50xce + xde xac โ xsa = 0 x xbdce โโ xxsbac = 0= 0 x xdeef โโ xxbdce = 0โ xde = 0 x^ โsa^ x, xefsb^ =, x^ โac^1 , xbd, xce, xde, xef โฅ 0
This is the formulation of the longest path problem from start to finish.
s
t
Augmenting path: s โ 1 โ t with bottleneck capacity ฮด = 20.
s
t
Augmenting path: s โ 2 โ t with bottleneck capacity ฮด = 15.
s
t
Augmenting path: s โ 3 โ t with bottleneck capacity ฮด = 10.
s
t
No more augmenting paths. Flow is optimal. Problem 5 Initial flow:
s
t
Augmenting path: s โ 1 โ 3 โ t with bottleneck capacity ฮด = 2.
s
t
Augmenting path: s โ 2 โ 4 โ t with bottleneck capacity ฮด = 3.
s
Hat Mon McC Cp
c c c c
t
(b) Solve the formulation of part (a) with the Ford-Fulkerson algorithm. Show the flow aftereach iteration of the algorithm. Solution:non-zero flow. Due to space constraints, we will only draw the middle arcs that have Initial flow.
s
Hat Mon McC Cp
c c c c
t
We consider the augmenting paths sin the augmenting path algorithm, we would consider them one by one). โ Cp โ c 4 โ t at once. Since none of the arcs overlap we can safely do this (note that s โ Hat โ c 1 โ t, s โ M on โ c 2 โ t, s โ M cC โ c 3 โ t,
s
Hat Mon McC Cp
c c c c
t
We consider the augmenting paths sin the augmenting path algorithm, we would consider them one by one). โ Cp โ c 3 โ t at once. Since none of the arcs overlap we can safely do this (note that s โ Hat โ c 2 โ t, s โ M on โ c 1 โ t, s โ M cC Note that โ c 4 โ t, the augmenting paths have bottleneck capacity 1 or 2.
s
Hat Mon McC Cp
c c c c
t
Since all sink-adjacent arcs are saturated, this flow is optimal.
Augmenting path: s โ m 2 โ p 3 โ t with bottleneck capacity ฮด = 6.
Augmenting path: s โ m 3 โ p 1 โ t with bottleneck capacity ฮด = 6.
Augmenting path: s โ m 1 โ p 1 โ t with bottleneck capacity ฮด = 2. Finally, we use augmenting pathscomplete the demand for project 2. s โ m 2 โ p 2 โ t, s โ m 3 โ p 2 โ t, s โ m 4 โ p 2 โ t to
- start, 0 A, - B, - C, - D, - E, - F, - G, - H, - finish, - StartAB 002 028 002 028 000 Solution: Activity EST EFT LST LFT Total slack Free float - CDE 826 12106 10108 141214 404 - GHF^1286 1497 131213 141414 507 - Finish