



Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
Material Type: Notes; Class: Calculus II; Subject: Mathematics; University: Pellissippi State Technical Community College; Term: Unknown 2006;
Typology: Study notes
1 / 5
This page cannot be seen from the preview
Don't miss anything!
l’Hospital’s Rule ~ page 1
INDETERMINATE FORMS AND L’HOSPITAL’S RULE
OBJECTIVE: Use l’Hospital’s Rule to find limits of indeterminate forms
l’Hospital’s Rule is a handy shortcut for finding the limit of some functions l(x) which are of the form
. We first determine if the given function meets the prerequisites for l’Hospital’s Rule.
f(x) l(x) g(x)
f(x) 0 lim or ; → g(x) 0
∞ (^) x
f(x) 0 lim or ; →±∞g(x) 0
H
x a x a
f(x) f (x) lim lim → g(x) → g (x)
H
=
the word.
necessary conditions , then l’Hospital’s Rule may be applied again. Always simplify
before applying the rule again!
answer”.
Example 1: Find
2
x^2
4x 3x 6 lim → ∞ 5 2x
= =
2
x^2
4x 3x 6 lim → ∞ 5 2x
2
2 2 2
x^2
2 2
4x 3x 6
x x x lim 5 2x
x x
→∞
− +
−
2
x 2
0 0
3 6 4 x (^) x lim 5 2 x
0
→∞
− +
−
/ /
2
differentiable everywhere
2
x^2
4x 3x 6 lim → ∞ 5 2x
− +
−
l’Hospital’s Rule ~ page 2
2
x^2
4x 3x 6 lim → ∞ 5 2x
H
= x
8x 3 lim → ∞ 4x
8x 3 m(x) 4x
Rule and that =. x
8x 3 lim → ∞ 4x
∞
∞
2
x^2
4x 3x 6 lim → ∞ 5 2x
H
= x
8x 3 lim → ∞ 4x
H
= x
lim 2 → ∞ 4
The previous example is not very impressive because we already knew how to find the derivative.
However, l’Hospital’s Rule will enable us to find other types of limits.
Example 2: Find x 0
lim → 2
sin x
x +x
in this case)
lim → 2
sin x
x +x
lim → 2
sin x
x +x
H
= x 0
lim →
co s x
1 +2x
Example 3: Find
x
lim → ∞
2x
3
e
x
2
lim → ∞
2x
3
e
x
2 ∞
lim → ∞
2x
3
e
x
2 H
= x
lim → ∞
2x^2
2
4xe
3x x
lim → ∞
2x^2 4e
3x
lim → ∞
2 2x 4e
3x
lim → ∞
2x
3
e
x
2 H
= x
lim → ∞
2 2x
2
4xe
3x x
lim → ∞
2x^2 4e
3x
H
= x
lim → ∞
2x^2 16xe
∞
l’Hospital’s Rule ~ page 4
Find
2
x
3 x lim x e →∞
−
Example 6: Find
x 0
lim →
(csc x −cot x)
lim →
(csc x − cot x) ∞ − ∞ ∞ − ∞
lim →
(csc x − cot x) x 0
lim →
1 cos x
sin x sin x
⎝ ⎠ x^0
lim →
1 cos x
sin x
lim →
1 cos x
sin x
lim →
(csc x − cot x) x 0
lim →
1 cos x
sin x
H
= x 0
lim →
sin x
cos x x^0
lim →
tan x
Find x 1
lim → ln x^ x^1
Indeterminate power types include. They are discussed on page 302.
0 0 0 , , and 1
∞ ∞
l’Hospital’s Rule ~ page 5
Solutions
x 0
x tan x lim → sin x
H
x 0 x 0
2 x tan x 1 sec x 1 1 lim lim 2 → sin x → cos x 1
x 0
x x 5 3 0 lim → x^0
H
x 0 x 0
x x x x 5 3 5 ln 5 3 ln 3 5 lim lim ln 5 ln 3 ln → x^ →^1
x 0 2
cosmx cosnx lim → x
H
x 0 2 x 0
cosmx cosnx m sinmx n sinnx 0 lim lim → (^) x → 2x^0
H H
x 0 x 0 x 0
2 2
2
cosmx cosnx m sinmx n sinnx m cosmx n cosnx lim lim lim → (^) x → 2x^ →^2
2 2 m n (^1 2 ) (n m ) 2 2
2
x
3 x lim x e →∞
−
x^2
3
x
x lim
e
→∞
2 2 2
H
x x x
3 2
x x x
x x x lim lim lim
e 2xe 2e
→∞ →∞ →∞
2 2
H
x x^ x x
x 1 lim lim 0
2e 4xe
→∞ →∞
x 1
lim → ln x^ x^1
⎝ − ⎠ x^1
x 1 ln x 0 lim → ln x(x^ 1)^0
H
x 1 x 1 x 1
x 1 ln x (^) x x x 1 0 lim lim lim ln x(x 1) 1 x x ln x x 1 0 (ln x)(1) (x 1) x
→ → →
i
H
x 1 x 1 x 1
x 1 1 1 1 lim lim lim x ln x x 1 1 ln x 2 2 x ln x 1 x
→ → →