


Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
Useful formula sheet for your Calculus exam
Typology: Cheat Sheet
1 / 4
This page cannot be seen from the preview
Don't miss anything!
Derivative Rules:
d c dx
(^) n n^1
d x nx dx
^
sin^ cos
d x x dx
sec^ sec^ tan
d x x x dx
2 tan sec
d x x dx
cos^ sin
d x x dx
csc^ csc^ cot
d x x x dx
2 cot csc
d x x dx
ln
d (^) x x a a a dx
d (^) x x e e dx
d d cf x c f x dx dx
d d d f x g x f x g x dx dx dx
f^ g^ f^ g^ f^ g ^ 2
f f g fg
g g
^
^ ^ ^ ^ ^ ^ ^
d f g x f g x g x dx
Properties of Integrals:
kf u du ( ) k f u du ( ) ^
f ( ) u g u ( ) du f u du ( ) g u du ( )
a
a
f^ x dx^ ( )^ ( )
b a
a b
f^ x dx^ f^ x dx
c b c
a a b
f^ x dx^ ^ f^ x dx^ f^ x dx
b
ave a
f f x dx b a
0
a a
a
f x dx f x dx
if^ f(x)^ is^ even^ ( )^0
a
a
f x dx
if^ f(x)^ is^ odd
( )
( )
b^ f^ b
a f a
g f x f x dx g u du udv^ ^ uv^ vdu
Integration Rules:
^ du^ ^ u^ C 1
n n u u du C n
ln
du u C u
^
u u e du^ ^ e^ C
1
ln
u u a du a C a
^ sin^ u du^ ^ cos u^ C
cos^ u du^ ^ sin u^ C 2 sec u du tan u C 2 csc^ u^ ^ cot u^ C
csc^ u^ cot^ u du^ ^ ^ csc u^ C
sec^ u^ tan^ u du^ ^ sec u^ C
2 2
arctan
du u C a u a a
2 2
arcsin
du u C a u a
2 2
sec
du u arc C u u a a^ a
Fundamental Theorem of Calculus:
x
a
b
a
Riemann Sums:
1 1
n n
i i i i
ca c a
1 1 1
n n n
i i i i i i i
a b a b
1
( ) lim ( )
b (^) n
n a i
f x dx f a i x x
n
b a x
1
n
i
n
1
( 1)
2
n
i
n n i
2
1
( 1)(2 1)
6
n
i
n n n i
2 3
1
( 1)
2
n
i
n n i
i
Right Endpoint Rule:
n
i
n
ba n
b a
n
i
1
( ) ( )
1
Left Endpoint Rule:
( ) ( )
1 1
n n b a b a n n i i
Midpoint Rule:
( 1) ( ) ( 1) ( ) 2 2 1 1
n n i i b a i i b a n n i i
Net Change:
Displacement: ( )
b
a
b
a
0
t
0
t
Trig Formulas:
(^2 ) sin ( ) x 21 cos(2 ) x
sin tan cos
x x x
sec cos
x x
cos( x ) cos( ) x sin ( )^2 x cos ( )^2 x 1
(^2 ) cos ( ) x 2 1 cos(2 ) x
cos cot sin
x x x
csc sin
x x
sin( x ) sin( ) x tan ( )^2 x 1 sec ( )^2 x
Geometry Fomulas:
Area of a Square: 2 A s
Area of a Triangle: 1 A 2 bh
Area of an Equilateral Trangle: 3 2 A 4 s
Area of a Circle: 2 A r
Area of a Rectangle:
A bh
Integration by Parts:
Knowing which function to call u and which to call dv takes some practice. Here is a general guide:
u I nverse Trig Function (
1 sin x , arccos x ,
etc )
L ogarithmic Functions ( log 3 , ln( x x 1),etc )
A lgebraic Functions (
3 x , x 5,1/ x ,etc )
T rig Functions ( sin(5 ), tan( ), x x etc )
dv E xponential Functions (
3 3 ,5 ,
x x e etc )
Functions that appear at the top of the list are more like to be u, functions at the bottom of the list are more like to be dv.
Trig Integrals:
Integrals involving sin(x) and cos(x): Integrals involving sec(x) and tan(x):
Goal: u cos x i. Save a du sin( ) x dx
ii. Convert the remaining factors to
cos( ) x (using
2 2 sin x 1 cos x .)
Goal: u tan x
i. Save a
2 du sec ( ) x dx
ii. Convert the remaining factors to
tan( ) x (using
2 2 sec x 1 tan x .)
Goal: u sin x i. Save a du cos( ) x dx
ii. Convert the remaining factors to
sin( ) x (using
2 2 cos x 1 sin x .)
Goal: u sec( ) x
i. Save a du sec( ) tan( ) x x dx
ii. Convert the remaining factors to
sec( ) x (using
2 2 sec x 1 tan x .)
Use the half angle identities:
(^2 ) sin ( ) x 2 1 cos(2 ) x
(^2 ) cos ( ) x 2 1 cos(2 ) x
If there are no sec(x) factors and the power of
tan(x) is even and positive, use
2 2 sec x 1 tan x
to convert one
2 tan x to
2 sec x
Rules for sec(x) and tan(x) also work for csc(x) and cot(x) with appropriate negative signs If nothing else works, convert everything to sines and cosines.
Trig Substitution:
Expression Substitution Domain Simplification
2 2
2 2
2 2
Partial Fractions:
Linear factors: Irreducible quadratic factors:
2 1 1 1 1 1 1
( ) ... ( ) ( ) ( ) ( ) ( )
m m m
P x A B Y Z
x r x r x r x r x r
(^) 2 2 2 2 2 1 2 1 1 1 1 1
( ) ... ( ) ( ) ( ) ( ) ( )
m m m
P x Ax B Cx D Wx X Yx Z
x r x r x r x r x r
If the fraction has multiple factors in the denominator, we just add the decompositions.