Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Integral Calculus Formula Cheat Sheet, Cheat Sheet of Calculus

Useful formula sheet for your Calculus exam

Typology: Cheat Sheet

2019/2020

Uploaded on 10/09/2020

themask
themask 🇺🇸

4.4

(17)

315 documents

1 / 4

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
IntegralCalculusFormulaSheet
DerivativeRules:

0
dc
dx

1
nn
dxnx
dx

sin cos
d
x
x
dx

sec sec tan
d
x
xx
dx

2
tan sec
d
x
x
dx

cos sin
d
x
x
dx 

csc csc cot
d
x
xx
dx 

2
cot csc
d
x
x
dx 

ln
xx
daaa
dx

x
x
dee
dx




dd
cf x c f x
dx dx
 





ddd
fx gx fx gx
dx dx dx


fg f gfg


2
fg fg
f
gg










dfgx f gx gx
dx
PropertiesofIntegrals:
() ()kf u du k f u du

() () () ()
f
u gu du f udu gudu

() 0
a
a
fxdx
() ()
ba
ab
f
xdx f xdx

() () ()
cbc
aab
f
xdx f xdx f xdx

1()
b
ave
a
f
fxdx
ba
0
() 2 ()
aa
a
f
xdx f xdx

iff(x)iseven() 0
a
a
fxdx
iff(x)isodd
()
()
( ()) () ()
fb
b
afa
gfx f xdx gudu

udv uv vdu
IntegrationRules:
du u C
1
1
n
nu
udu C
n

ln
du uC
u
uu
edu e C
1
ln
uu
adu a C
a

sin cosudu u C
cos sinudu u C
2
sec tanudu u C
2
csc cotuuC
csc cot cscuudu uC

sec tan secuudu uC
22
1arctan
du u C
au a a




22
arcsin
du u C
a
au




22
1sec u
du arc C
aa
uu a




pf3
pf4

Partial preview of the text

Download Integral Calculus Formula Cheat Sheet and more Cheat Sheet Calculus in PDF only on Docsity!

Integral Calculus Formula Sheet

Derivative Rules:

d c dx

 (^)  n n^1

d x nx dx

^ 

 sin^  cos

d x x dx

 sec^  sec^ tan

d x x x dx

 

2 tan sec

d x x dx

 cos^  sin

d x x dx

 csc^  csc^ cot

d x x x dx

 

2 cot csc

d x x dx

  ln

d (^) x x a a a dx

 

d (^) x x e e dx

d d cf x c f x dx dx

d d d f x g x f x g x dx dx dx

  

 f^ g^  f^ g^ f^ g  ^       2

f f g fg

g g

 ^        

 ^ ^   ^ ^ ^ ^ ^ 

d f g x f g x g x dx

Properties of Integrals:

kf u du ( )  k f u du ( )   ^ 

f ( ) ug u ( ) duf u du ( )  g u du ( )   

a

a

f^ x dx^  ( )^ ( )

b a

a b

f^ x dx^   f^ x dx

c b c

a a b

f^ x dx^ ^  f^ x dx^  f^ x dx

b

ave a

f f x dx b a

0

a a

a

f x dx f x dx

   if^ f(x)^ is^ even^ ( )^0

a

a

f x dx

  if^ f(x)^ is^ odd

( )

( )

b^ f^ b

a f a

g f x fx dxg u du    udv^ ^ uv^  vdu

Integration Rules:

^ du^ ^ u^  C 1

n n u u du C n

   

ln

du u C u

 ^ 

u ue du^ ^ e^  C

1

ln

u u a du a C a

^ sin^ u du^  ^ cos u^  C

 cos^ u du^ ^ sin u^  C 2 sec u du  tan uC  2 csc^ u^  ^ cot u^  C

csc^ u^ cot^ u du^ ^ ^ csc u^  C

sec^ u^ tan^ u du^ ^ sec u^  C

2 2

arctan

du u C a u a a

2 2

arcsin

du u C a u a

 ^ 

2 2

sec

du u arc C u u a a^ a

Fundamental Theorem of Calculus:

x

a

d

F x f t dt f x

dx

where f  t is a continuous function on [ a, x ].

 ^ ^ ^ ^ ^  ^ 

b

a

f x dx F b F a , where F(x) is any antiderivative of f(x).

Riemann Sums:

1 1

n n

i i i i

ca c a  

1 1 1

n n n

i i i i i i i

a b a b   

 ^ ^  

1

( ) lim ( )

b (^) n

n a i

f x dx f a i x x  

n

b a x

  

1

n

i

n

1

( 1)

2

n

i

n n i

2

1

( 1)(2 1)

6

n

i

n n n i

 

2 3

1

( 1)

2

n

i

n n i

       

 height of th rectangle^   width of th rectangle

i

 i^  i

Right Endpoint Rule:

 

n

i

n

ba n

b a

n

i

f a i x x f a i

1

( ) ( )

1

Left Endpoint Rule:

( ) ( )

1 1

n n b a b a n n i i

f a i x x f a i

 

 

 ^ ^ ^ ^ ^  ^ 

Midpoint Rule:

( 1) ( ) ( 1) ( ) 2 2 1 1

n n i i b a i i b a n n i i

f a x x f a

     

 

 ^ ^ ^ ^  

Net Change:

Displacement: ( )

b

a

 v x dx Distance^ Traveled:^ ( )

b

a

 v x^ dx

0

t

s t  s   v x dx

0

t

Q t  Q   Q  x dx

Trig Formulas:

(^2 ) sin ( ) x  21  cos(2 ) x

sin tan cos

x x x

sec cos

x x

cos(  x )  cos( ) x sin ( )^2 x  cos ( )^2 x  1

(^2 ) cos ( ) x  2 1  cos(2 ) x

cos cot sin

x x x

csc sin

x x

sin(  x )   sin( ) x tan ( )^2 x  1 sec ( )^2 x

Geometry Fomulas:

Area of a Square: 2 As

Area of a Triangle: 1 A  2 bh

Area of an Equilateral Trangle: 3 2 A  4 s

Area of a Circle: 2 A   r

Area of a Rectangle:

Abh

Integration by Parts:

Knowing which function to call u and which to call dv takes some practice. Here is a general guide:

u I nverse Trig Function (

1 sin x , arccos x ,

 etc )

L ogarithmic Functions ( log 3 , ln( x x  1),etc )

A lgebraic Functions (

3 x , x  5,1/ x ,etc )

T rig Functions ( sin(5 ), tan( ), x x etc )

dv E xponential Functions (

3 3 ,5 ,

x x e etc )

Functions that appear at the top of the list are more like to be u, functions at the bottom of the list are more like to be dv.

Trig Integrals:

Integrals involving sin(x) and cos(x): Integrals involving sec(x) and tan(x):

  1. If the power of the sine is odd and positive:

Goal: u cos x i. Save a du sin( ) x dx

ii. Convert the remaining factors to

cos( ) x (using

2 2 sin x  1  cos x .)

  1. If the power of sec( ) x is even and positive:

Goal: u tan x

i. Save a

2 du sec ( ) x dx

ii. Convert the remaining factors to

tan( ) x (using

2 2 sec x  1  tan x .)

  1. If the power of the cosine is odd and positive:

Goal: u sin x i. Save a du cos( ) x dx

ii. Convert the remaining factors to

sin( ) x (using

2 2 cos x  1  sin x .)

  1. If the power of tan( ) x is odd and positive:

Goal: u sec( ) x

i. Save a du sec( ) tan( ) x x dx

ii. Convert the remaining factors to

sec( ) x (using

2 2 sec x  1  tan x .)

  1. If both sin( ) x and cos( ) x have even powers:

Use the half angle identities:

i.  

(^2 ) sin ( ) x  2 1 cos(2 ) x

ii.  

(^2 ) cos ( ) x  2 1 cos(2 ) x

 If there are no sec(x) factors and the power of

tan(x) is even and positive, use

2 2 sec x  1 tan x

to convert one

2 tan x to

2 sec x

 Rules for sec(x) and tan(x) also work for csc(x) and cot(x) with appropriate negative signs If nothing else works, convert everything to sines and cosines.

Trig Substitution:

Expression Substitution Domain Simplification

2 2

a  u u^ ^ a sin^  2 2

 

   a^2^  u^2  a cos 

2 2

a  u u^ ^ a tan^  2 2

 

   a^2  u^2  a sec 

2 2

u  a u^ ^ a sec^ ^0 ,^2

     u^2  a^2^  a tan 

Partial Fractions:

Linear factors: Irreducible quadratic factors:

2 1 1 1 1 1 1

( ) ... ( ) ( ) ( ) ( ) ( )

m m m

P x A B Y Z

x r x r x r x r x r

    (^)        2 2 2 2 2 1 2 1 1 1 1 1

( ) ... ( ) ( ) ( ) ( ) ( )

m m m

P x Ax B Cx D Wx X Yx Z

x r x r x r x r x r

             

If the fraction has multiple factors in the denominator, we just add the decompositions.