Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Integrations formula sheet, Cheat Sheet of Calculus

Formula sheet in common integrals, integrals of rational functions, integrals of exponential functions, integrals of logarithms functions and integrals of trigonometric functions.

Typology: Cheat Sheet

2021/2022

Uploaded on 02/07/2022

sheetal_101
sheetal_101 🇺🇸

4.8

(17)

234 documents

1 / 5

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
www.mathportal.org
Integration Formulas
1. Common Integrals
Indefinite Integral
Method of substitution
( ( )) ( ) ( )
f g x g x dx f u du
=
Integration by parts
( ) ( ) ( ) ( ) ( ) ( )
f x g x dx f x g x g x f x dx
=
Integrals of Rational and Irrational Functions
1
1
n
nx
x dx C
n
+
+
1ln
dx x C
x
= +
c dx cx C
= +
2
2
x
xdx C
= +
3
2
3
x
x dx C
= +
2
1 1
dx C
x x
= +
2
3
x x
xdx C
= +
2
1arctan
1
dx x C
x
= +
+
2
1arcsin
1
dx x C
x
= +
Integrals of Trigonometric Functions
sin cos
x dx x C
= +
cos sin
x dx x C
= +
tan ln sec
x dx x C
= +
sec ln tan sec
x dx x x C
= + +
( )
21
sin sin cos
2
x dx x x x C
= +
( )
21
cos sin cos
2
x dx x x x C
= + +
2
tan tan
x dx x x C
= +
2
sec tan
x dx x C
= +
Integrals of Exponential and Logarithmic Functions
ln ln
x dx x x x C
= +
( )
1 1
2
ln ln
11
n n
nx x
x x dx x C
nn
+ +
= +
++
x x
e dx e C
= +
ln
x
xb
b dx C
b
= +
sinh cosh
x dx x C
= +
cosh sinh
x dx x C
= +
pf3
pf4
pf5

Partial preview of the text

Download Integrations formula sheet and more Cheat Sheet Calculus in PDF only on Docsity!

Integration Formulas

1. Common Integrals

Indefinite Integral

Method of substitution

f ( g x( )) g ( )x dx f u du( )

∫ ∫

Integration by parts

f ( )x g ( )x dx f ( )x g x ( ) g x f( ) ( )x dx

∫ ∫

Integrals of Rational and Irrational Functions

1

n

n

x

x dx C

n

dx lnx C

x

c dx = cx +C

2

x

xdx = +C

3

2

x

x dx = +C

2

dx C

x x

x x

xdx = +C

2

arctan

dx x C

x

2

arcsin

dx x C

x

Integrals of Trigonometric Functions

sin x dx = − cosx +C

cos x dx = sinx +C

tan x dx = ln secx +C

sec x dx = ln tan x + secx +C

( )

2

sin sin cos

x dx = x − x x +C

( )

2

cos sin cos

x dx = x + x x +C

2

tan x dx = tanx − x +C

2

sec x dx = tanx +C

Integrals of Exponential and Logarithmic Functions

ln x dx = x lnx − x +C

( )

1 1

2

ln ln

n n

n

x x

x x dx x C

n

n

x x

e dx = e +C

ln

x

x

b

b dx C

b

sinh x dx = coshx +C

cosh x dx = sinhx +C

2. Integrals of Rational Functions

Integrals involving ax + b

( )

( )

( )

( )

1

n

n

ax b

ax b dx

a

fo n

n

r

dx lnax b

ax b a

( )

( )

( )( )

( ) ( )

1

2

n n

a n x b

x ax b dx ax b

a n n

for n n

2

ln

x x b

dx ax b

ax b a a

( )

( )

2 2 2

ln

x b

dx ax b

a ax b a

ax b

( )

( )

( )( )( )

( )

1 2

n n

a n x b

x

dx

ax b a n n

for n

ax b

n

( )

( )

2

2

2

3

2 ln

ax b

x

dx b ax b b ax b

ax b a

( )

2 2

2 3

2 ln

x b

dx ax b b ax b

ax b a

ax b

( ) ( )

2 2

3 3 2

ln

x b b

dx ax b

ax b a

ax b ax b

( )

( ) ( ) ( )

( )

3 2 1

2 2

3

n n n

n

ax b b a b b ax b x

dx

n n

fo

n

a

r n

a

x b

− − −

( )

ln

ax b

dx

x ax b b x

( )

2 2

ln

a ax b

dx

bx x x ax b b

( )

( )

2 2 2 3

2

ln

ax b

dx a

x b a xb ab x b

x ax b

Integrals involving ax

2

+ bx + c

2 2

1 1 x

dx arctg

a a x a

2 2

ln

ln

a x

for x a

a a x

dx

x a x a

for x a

a x a

4. Integrals of Logarithmic Functions

ln cxdx = x lncx −x

ln( ) ln( ) ln( )

b

ax b dx x ax b x ax b

a

2 2

ln x dx = x ln x − 2 x ln x + 2 x

1

ln ln ln

n n n

cx dx x cx n cx dx

2

ln

ln ln ln

ln!

i

n

x dx

x x

x i i

=

1 1

ln 1 ln ln

n n n

for n

dx x dx

n

x n x x

− −

1

2

ln 1

n

l 1

m m

x

x xdx x

m

m

for m

1

1

ln

ln

ln 1

n

m

n n m m

x x n

x x dx x x dx

m

r

m

fo m

1

ln ln

n n

x x

dx for n

x n

2

ln

ln

n

n x

x

dx for n

x n

1 2 1

ln ln 1

m m m

x x

dx

x m x m

for

x

m

− −

1

1

ln ln n

l

n n n

m m m

x x x

n

dx dx

m x m x x

for m

ln ln

ln

dx

x

x x

1

1 ln

ln ln 1

ln

i i

i

n

i

n x

dx

x

i i x x

=

1

ln 1 ln

n n

dx

x x n

f

x

or n

2 2 2 2 1

ln ln 2 2 tan

x

x a dx x x a x a

a

sin ln sin ln cos ln

x

x dx = x − x

cos ln sin ln cos ln

x

x dx = x + x

5. Integrals of Trig. Functions

sin xdx = −cosx

cos xdx = −sinx

2

sin sin 2

x

xdx = − x

2

cos sin 2

x

xdx = + x

3 3

sin cos cos

xdx = x − x

3 3

cos sin sin

xdx = x − x

ln tan

sin 2

dx x

xdx

x

ln tan

cos 2 4

dx x

xdx

x

2

cot

sin

dx

xdx x

x

2

tan

cos

dx

xdx x

x

3 2

cos 1

ln tan

sin 2sin 2 2

dx x x

x x

3 2

sin 1

ln tan

cos 2 cos 2 2 4

dx x x

x x

sin cos cos 2

x xdx = − x

2 3

sin cos sin

x xdx = x

2 3

sin cos cos

x xdx = − x

2 2

sin cos sin 4

x

x xdx = − x

tan xdx = −ln cosx

2

sin 1

cos cos

x

dx

x x

2

sin

ln tan sin

cos 2 4

x x

dx x

x

2

tan xdx = tanx −x

cot xdx =ln sinx

2

cos 1

sin sin

x

dx

x x

2

cos

ln tan cos

sin 2

x x

dx x

x

2

cot xdx = − cotx −x

ln tan

sin cos

dx

x

x x

2

ln tan

sin 2 4 sin cos

dx x

x x x

2

ln tan

sin cos cos 2

dx x

x x x

2 2

tan cot

sin cos

dx

x x

x x

( )

( )

( )

( )

2 2

sin sin

sin sin

m n x m n x

mx nxdx

n m n

m n

m

( )

( )

( )

( )

2 2

cos cos

sin cos

m n x m n x

mx nxdx

n m n

m n

m

( )

( )

( )

( )

2 2

sin sin

cos cos

m n x m n x

mx nxdx

m n m n

m n

1

cos

sin cos

n

n

x

x xdx

n

1

sin

sin cos

n

n

x

x xdx

n

2

arcsin xdx = x arcsin x + 1 −x

2

arccos xdx = x arccos x − 1 −x

( )

2

arctan arctan ln 1

xdx = x x − x +

( )

2

arc cot arc cot ln 1

xdx = x x + x +