



Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
Formula sheet in common integrals, integrals of rational functions, integrals of exponential functions, integrals of logarithms functions and integrals of trigonometric functions.
Typology: Cheat Sheet
1 / 5
This page cannot be seen from the preview
Don't miss anything!
Indefinite Integral
Method of substitution
f ( g x( )) g ( )x dx f u du( )
∫ ∫
Integration by parts
f ( )x g ( )x dx f ( )x g x ( ) g x f( ) ( )x dx
∫ ∫
Integrals of Rational and Irrational Functions
1
n
n
x
x dx C
n
∫
dx lnx C
x
∫
c dx = cx +C
∫
2
x
xdx = +C
∫
3
2
x
x dx = +C
∫
2
dx C
x x
∫
x x
xdx = +C
∫
2
arctan
dx x C
x
∫
2
arcsin
dx x C
x
∫
Integrals of Trigonometric Functions
sin x dx = − cosx +C
∫
cos x dx = sinx +C
∫
tan x dx = ln secx +C
∫
sec x dx = ln tan x + secx +C
∫
( )
2
sin sin cos
x dx = x − x x +C
∫
( )
2
cos sin cos
x dx = x + x x +C
∫
2
tan x dx = tanx − x +C
∫
2
sec x dx = tanx +C
∫
Integrals of Exponential and Logarithmic Functions
ln x dx = x lnx − x +C
∫
( )
1 1
2
ln ln
n n
n
x x
x x dx x C
n
n
∫
x x
e dx = e +C
∫
ln
x
x
b
b dx C
b
∫
sinh x dx = coshx +C
∫
cosh x dx = sinhx +C
∫
Integrals involving ax + b
( )
( )
( )
( )
1
n
n
ax b
ax b dx
a
fo n
n
r
∫
dx lnax b
ax b a
∫
( )
( )
( )( )
( ) ( )
1
2
n n
a n x b
x ax b dx ax b
a n n
for n n
∫
2
ln
x x b
dx ax b
ax b a a
∫
( )
( )
2 2 2
ln
x b
dx ax b
a ax b a
ax b
∫
( )
( )
( )( )( )
( )
1 2
n n
a n x b
x
dx
ax b a n n
for n
ax b
n
−
∫
( )
( )
2
2
2
3
2 ln
ax b
x
dx b ax b b ax b
ax b a
∫
( )
2 2
2 3
2 ln
x b
dx ax b b ax b
ax b a
ax b
∫
( ) ( )
2 2
3 3 2
ln
x b b
dx ax b
ax b a
ax b ax b
∫
( )
( ) ( ) ( )
( )
3 2 1
2 2
3
n n n
n
ax b b a b b ax b x
dx
n n
fo
n
a
r n
a
x b
− − −
∫
( )
ln
ax b
dx
x ax b b x
∫
( )
2 2
ln
a ax b
dx
bx x x ax b b
∫
( )
( )
2 2 2 3
2
ln
ax b
dx a
x b a xb ab x b
x ax b
∫
Integrals involving ax
2
+ bx + c
2 2
1 1 x
dx arctg
a a x a
∫
2 2
ln
ln
a x
for x a
a a x
dx
x a x a
for x a
a x a
∫
ln cxdx = x lncx −x
ln( ) ln( ) ln( )
b
ax b dx x ax b x ax b
a
2 2
ln x dx = x ln x − 2 x ln x + 2 x
1
ln ln ln
n n n
cx dx x cx n cx dx
−
2
ln
ln ln ln
ln!
i
n
x dx
x x
x i i
∞
=
1 1
ln 1 ln ln
n n n
for n
dx x dx
n
x n x x
− −
1
2
ln 1
n
l 1
m m
x
x xdx x
m
m
for m
1
1
ln
ln
ln 1
n
m
n n m m
x x n
x x dx x x dx
m
r
m
fo m
−
1
ln ln
n n
x x
dx for n
x n
2
ln
ln
n
n x
x
dx for n
x n
1 2 1
ln ln 1
m m m
x x
dx
x m x m
for
x
m
− −
1
1
ln ln n
l
n n n
m m m
x x x
n
dx dx
m x m x x
for m
−
−
ln ln
ln
dx
x
x x
1
1 ln
ln ln 1
ln
i i
i
n
i
n x
dx
x
i i x x
∞
=
1
ln 1 ln
n n
dx
x x n
f
x
or n
−
2 2 2 2 1
ln ln 2 2 tan
x
x a dx x x a x a
a
−
sin ln sin ln cos ln
x
x dx = x − x
cos ln sin ln cos ln
x
x dx = x + x
sin xdx = −cosx
∫
cos xdx = −sinx
∫
2
sin sin 2
x
xdx = − x
∫
2
cos sin 2
x
xdx = + x
∫
3 3
sin cos cos
xdx = x − x
∫
3 3
cos sin sin
xdx = x − x
∫
ln tan
sin 2
dx x
xdx
x
∫
ln tan
cos 2 4
dx x
xdx
x
∫
2
cot
sin
dx
xdx x
x
∫
2
tan
cos
dx
xdx x
x
∫
3 2
cos 1
ln tan
sin 2sin 2 2
dx x x
x x
∫
3 2
sin 1
ln tan
cos 2 cos 2 2 4
dx x x
x x
∫
sin cos cos 2
x xdx = − x
∫
2 3
sin cos sin
x xdx = x
∫
2 3
sin cos cos
x xdx = − x
∫
2 2
sin cos sin 4
x
x xdx = − x
∫
tan xdx = −ln cosx
∫
2
sin 1
cos cos
x
dx
x x
∫
2
sin
ln tan sin
cos 2 4
x x
dx x
x
∫
2
tan xdx = tanx −x
∫
cot xdx =ln sinx
∫
2
cos 1
sin sin
x
dx
x x
∫
2
cos
ln tan cos
sin 2
x x
dx x
x
∫
2
cot xdx = − cotx −x
∫
ln tan
sin cos
dx
x
x x
∫
2
ln tan
sin 2 4 sin cos
dx x
x x x
∫
2
ln tan
sin cos cos 2
dx x
x x x
∫
2 2
tan cot
sin cos
dx
x x
x x
∫
( )
( )
( )
( )
2 2
sin sin
sin sin
m n x m n x
mx nxdx
n m n
m n
m
∫
( )
( )
( )
( )
2 2
cos cos
sin cos
m n x m n x
mx nxdx
n m n
m n
m
∫
( )
( )
( )
( )
2 2
sin sin
cos cos
m n x m n x
mx nxdx
m n m n
m n
∫
1
cos
sin cos
n
n
x
x xdx
n
∫
1
sin
sin cos
n
n
x
x xdx
n
∫
2
arcsin xdx = x arcsin x + 1 −x
∫
2
arccos xdx = x arccos x − 1 −x
∫
( )
2
arctan arctan ln 1
xdx = x x − x +
∫
( )
2
arc cot arc cot ln 1
xdx = x x + x +
∫