Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

irodov_problems_in_general_physics_2011, Study Guides, Projects, Research of Physics

irodov_problems_in_general_physics_2011

Typology: Study Guides, Projects, Research

2010/2011

Uploaded on 01/07/2023

mo-salah
mo-salah 🇺🇸

5

(3)

231 documents

1 / 5

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
2.59. (a)
T (V — b)
R
i
c
v =
const;
(b)
C
p
—C
V
I-2a
(V — RTV
3
2.60. AT=
vaV
2
(y-1)
3.0 K.
Rv, (V„-{-v,)
2.61.
Q =
Oa (V
2
— V
1
)1VIV
2
= 0.33 kJ.
2.62. n =
p/kT = 1.10
5
cm
-3
;
(1)
=
0.2 mm.
2.63.
p = (1
mRTI MV =
1.9 atm, where
M
is the mass
of an
N
2
mole.
2.64. n =
(p/kT —
p/m
2
)/(1 — m
l
/m
2
) = 1.6.10
19
cm-
3
, where
m
l
and m
2
are the masses of helium and nitrogen molecules.
2.65.
p =
2nmv
2
cost 0 = 1.0 atm, where
m
is the mass of
a
nitrogen molecule.
2.66. i = 2/(pv
2
/p — 1) = 5.
2.67.
v/v
n
+ 2)/3i; (a) 0.75; (b) 0.68.
(3N — 3)
kT
for volume molecules.
2.68. (8)=
(3N — 5/2)
kT
for linear molecules.
1/2(N-1) and 1/(2N-5/3) respectively.
2.69. (a)
C
V
=
7
/
2
R, y = 9/7; (b)
C
V
= (3N — 5/2)
R, y
= (6N —
3)/(6N — 5); (c)
Cr
= 3
(N — 1) R, y =
= (N —
2
1
3
)/(N — 1).
1/(3N — 2) for volume molecules,
2.70.
A/Q=
1/(3N — 3/2) for linear molecules.
For monoatomic molecules
A/Q = 2/5.
2.71.
M = RI(c
p
— c
v
.) =
32 g/mol.
i
=
2/(c
p
/cv
— 1) = 5.
2.72. (a)
i
= 2
(C
p
IR — 1) =
5; (b) i = 2
[C/R
1/(n —
1)] =
= 3, where n = 1/2 is the polytropic index.
2.73. y = (5v
1
7v
2
)/(3v
1
5v
2
).
2.74. Increases
by Aplp = Mv
2
IiRT =
2.2%, where
i
= 5.
2.75. (a)
v
n
=
-
113RTIM=
0.47 km/s, (8)=
3
/
2
kT = 6.0-10
-21
J;
(b)
3
1/2kTlapd
3
=
0.15 m/s.
2.76. 1
1
= 7.6 times.
2.77.
Q =
1
1
2
1) imRTIM =
10 kJ.
2.78.
W
s
q
= 172
kTa
=
6.3 • 10
12
rad/sec.
2.79.
(€),..,
t
= kT
o
i
2
/i = 0.7.10
-2
°
J.
2.80. Decreases 11(
11-1
)/
1
times, where i = 5.
2.81. Decreases 11(i
-1
0
-2
) = 2.5 times.
2.82.
C
=
1
/
2
R
(i
1) = 3R.
2.83. v
p
, = 112p/p = 0.45 km/s, (v) = 0.51 km/s,
= 0.55 km/s.
2.84. (a)
6NIN =
(8/1/n) e
-1
61 = 1.66%;
(b)
ON IN
= 12 1/
-
3/2n e
-3
/
2
8i = 1.85%.
)
2 )2
MV2
2.85. (a)
T =
k
m
(Av
-v-
—380 K; (b)
T =
2k
=340 K.
2.86.
(a) T —
—330
K; (b) v=
3kTo
•ri
4k ln
(v
2
/v
i
i)
)
V m 1-1 •
pf3
pf4
pf5

Partial preview of the text

Download irodov_problems_in_general_physics_2011 and more Study Guides, Projects, Research Physics in PDF only on Docsity!

2.59. (a) T (V — b)Ricv = const; (b) Cp —CV — I-2a (V — RTV3 •

2.60. AT=

vaV2 (y-1) (^) 3.0 K. Rv, (V„-{-v,) 2.61. Q = Oa (V2— V1)1VIV2= 0.33 kJ. 2.62. n = p/kT = 1.105 cm-3;^ (1)^ =^ 0.2 mm. 2.63. p = (1 mRTI MV =^ 1.9 atm, where^ M^ is the mass of an N2 mole. 2.64. n = (p/kT — p/m2)/(1 — ml/m2) = 1.6.1019 cm-3, where mland m2are the masses of helium and nitrogen molecules.

2.65. p = 2nmv2cost 0 = 1.0 atm, where^ m^ is the mass of^ a

nitrogen molecule. 2.66. i = 2/(pv2/p — 1) = 5. 2.67. v/vn + 2)/3i; (a) 0.75; (b) 0.68. (3N — 3) kT^ for volume molecules. 2.68. (8)= (3N — 5/2) kT for linear molecules. 1/2(N-1) and 1/(2N-5/3) respectively. 2.69. (a) CV =7/2R, y = 9/7; (b)^ CV = (3N — 5/2)^ R, y = (6N — 3)/(6N — 5); (c) Cr = 3 (N — 1) R, y = = (N — 213)/(N — 1). 1/(3N — 2) for volume molecules, 2.70. A/Q= 1/(3N — 3/2) for linear molecules. For monoatomic molecules A/Q = 2/5. 2.71. M = RI(cp— cv.) = 32 g/mol. i = 2/(cp/cv — 1) = 5.

2.72. (a) i = 2 (CpIR — 1) = 5; (b) i = 2^ [C/R^ 1/(n —^ 1)] =

= 3, where n = 1/2 is the polytropic index. 2.73. y = (5v1 7v2)/(3v1 5v2). 2.74. Increases by Aplp = Mv2IiRT =^ 2.2%, where^ i^ = 5.

2.75. (a) vn=-113RTIM= 0.47 km/s, (8)= 3/2kT = 6.0-10-21 J;

(b) 3 1/2kTlapd3= 0.15 m/s. 2.76. 11= 7.6 times. 2.77. (^) Q = 1121) imRTIM = 10 kJ. 2.78. Ws q = 172 kTa^ =^ 6.3 • 1012rad/sec.

2.79. (€),..,t = kToi2/i = 0.7.10-2°^ J.

2.80. Decreases 11(11-1)/1times, where i = 5. 2.81. Decreases 11(i-10-2) = 2.5 times. 2.82. C = 1/2R (i 1) = 3R. 2.83. vp, = 112p/p = 0.45 km/s, (v) = 0.51 km/s, = 0.55 km/s. 2.84. (a) 6NIN = (8/1/n) e-161 = 1.66%; (b) ON IN = 12 1/-3/2n e-3/28i = 1.85%. ) 2 )

MV 2.85. (a) T = k

m (Av -v-

—380 K; (b) T =^ 2k =340 K.

2.86. (a) T — —330 K; (b) v=

3kTo •ri 4k ln (v2/vi

i) ) V m 1-1 •

2.87. T — 2k (i mAvN)m 0)2— 0.37 kK.

2.88. v =

3kT 1n (m2/m1)=1.61 km/s. M2 — (^) 1 2.89. T = 113mv21k. 2.90. dN/N = (-72akT2' ) 3/2 e-mv212hT 2nvldvldvx.

2.91. (vx)= (^) 0, (I vx ) =1/.2kT I nm• 2.92. (v1) = kT/m. 2.93. v =1/4r1 (v), where (v) = li8kT/am. Co 2.94. p = 2mvx• vxdn (vx) = nkT , where dn (vx) =

(m12nkT) 1/2n • e-m4/2hT^ dvx. 2.95. (1/v) =1/2mInkT =^ 4n (v). 2.96. dN/N= 21s (nkT)-3/2e-ena^ dc; ep, =1/2kT;^ no. 2.97. SNIN = 3 6n e-3126i= 0.9%. CO 2.90 — = Q^ AN 231 (nkT)312 J

The principal contribution to the value of the integral is provided by the smallest values of a, namely a x ao. The slowly varying factor lii-can be taken from under the radical sign if ascribed the constant value 1/- so. Then

AN 1 N = 2 V eolnkT e-sona 2.99. (a) vp,. = 1/3kT/m; (b) apr = kT. 00 2.100. dv = dn (42143-t)v cos 0 = n (2kT/am)I/2sin 0 cos 0 de. v=- n/ 2.101. dv = dn (d52/4n) v cos 0 = n (m/2akT)3/2 e-mv2/211Tv3 dv. e=o 2.102. F = (kT I Ah) ln = 0.9.10-0 N. 2.103. NA = (6RT Ind3Apgh) ln 6.4.1023mo1-1. 2.104. 11/10 = ec.m2-m1vninT^ = 1.39. 2.105. h — kT (m2^ In (n21%)— mi) g • 2.106. Will not change. 2.107. (U) = kT. Does not depend. 2.108. w riliT I M1 N 70 g. 2.109. M — 2RTp In 1 (P— Po) (r2— r?) 0)2^ 2.110. co = V (2RT M12) ln rl = 280 rad/s. 2.111. (a) dN = no e-ar2/hT4ar2 dr; (b) kT/a; (c) dN = = (a/akT)3/2 e-ar2/14T4TEr2^ dr; (d) Will increase 13/2-fold.

1/^8 e-e/kT de.

2.135. (^) 152-S1=-• vR (In a yin^ =1.0 J/K.

2.136. AS = (n^ ' (n-1) (

OR

v —1) In^ T. 2.137. AS —v(+1).R^ v ln a 46 J/K. 71 2.138. V7nVo/a (1 +1').

2.139. T = To+ (R/a) In (V/Vo)•

2.140. AS = R In [(V2— b)/(Vi — b)].

2.141. AS = Cv In (T2/T1) + R In [(V2— b)/(Vi— b)].

2.142. S = aT3/3.

2.143. AS = m [a In (T2/T1) + b (T 2— T

Ti)] = 2.0 kJ/K.

2.144. C = Sin; C <0 for n <0.

2.145. T = T oes-sox.^ See Fig. 15.

2.146. (a) C= —air; (b) Q.- a In (T1/T2);

(c) A = a In (Ti/T2) + Cv T2)• C<

2.147. (a) = (n — 1)/2n; (b) = (n —

—1)/(n + 1).

2.148. AS = vR In n = 20 J/K. so

2.149. AU = (2Y-1— 1) RT0/(y —1), AS Fig. 15.

= R In 2.

2.150. The pressure will be higher after the fast expansion. 2.151. AS = v1R In (1 + n) + v2R In (1 + 1/n) = 5.1 J/K.

2.152. AS = m1clIn^ (T/Ti) + m2c2 In^ (T/T 2) =^ 4.4 J/K, where

7' = (^) + m2c2T2)/(m1c1 + m2c2), c1and c2are the specific heat capacities of copper and water.

2.153. AS = Cv In (T 4T

  • Ts) irg >0.

2.154. (a) P .112N; (b) N — hrog(t2IT) 80, where 10-2 s is

the mean time which takes a helium atom to cover distances of the order of the vessel's dimensions.

2.155. Op,. = Ar1/1(N/2)!P = 252. Pnia = 52p7.12N =^ 24.6%.

2.156. Po,—

N! '

n! (N—n)! 2N respectively.

2.157. Pn=

n1ovNI where

p.V /V°.

2.158. d= )376/Icn0re= 0.4 fun, where no is Loschmidt's num-

ber; (n) = 1.0 .106. 2.159. Will increase S2/00= (1 + AT/To)iNA/2= 101.31.10" times. 2.160. (a) Ap = 4a/d = 13 atm; (b) Ap = 8a/d = 1.2.10-3atm.

2.161. h = 4alpgd = 21 cm.

2.162. a = 1/8pod (1. — re/n)/(112— 1).

2.163. p = po+ p gh 4a/d 2.2 atm.

2.164. h= [Po (n3— 1) + 4a (n2— 1)/d1/pg = 5 m.

2.165. Ah = 4a I cos 0 I (d2— dOldid2pg = 11 mm.

C>

2.166. R = 2a/pgh = 0.6 mm. 2.167. (^) x = //(1 pod/4a) = 1.4 cm. 2.168. a = [pgh poll(1 — h)] d/4 cos 0. 2.169. h = 4a/pg (d2— d1) = 6 cm. 2.170. h = 2a cos 0/pgx&p.

2.171. V1= 1/4ld^

n

(n 1

1)/pd 0.9 ems/s. 2.172. R^2 R 1 %.t'.• 1/8pgh2/ct = 0.20 mm. 2.173. m 2nR2ccl cos 0 l(n2— 1)Igh = 0.7 kg. 2.174. (^) F 2am/ph2= 1.0 N. 2.175. F = 2nR2alh = 0.6 kN. 2.176. F = 2a21/pgd2= 13 N. 2.177. t = 21T1R4/ar4. 2.178. Q = 2na2lpg. 2.179. (a) F = nad2 = 3μJ; (b)^ F = 2nad2 = 10 P. 2.180. AF = 2nad2(2-h/3— 1) = —1.5 la. 2.181. A' = F pV In (plp,),^ where^ F =^ 8nR2a,^ p = 4aIR, V = 413nR3. 2.182. C — Cp =1/2R/(1 2/2por/a). 2.184. (a) AS = —2 (da/dT)^ Au; (b) A^ U^ = 2 (a —^ T daldT) X

X Aa.

2.185. A = AmRTIM =^ 1.2 J. 2.186. m, = (V — inVi)/(V; — VD = 20 g, V, = 1.0^ 1. Here 17; is the specific volume of water. 2.187. m1 z Mpo (V, — V)IRT =^ 2.0 g, where Pois the stan- dard atmospheric pressure. 2.188. (n — 1)I(N — 1); = 1/(N^ 1). 2.189. AS = mq/T = 6.0 kJ/K; AU = m(q — RT/M) = (^) 2.1 MJ, where T = 373 K.

2.190. h x

(Q —mcAT) = 20 cm, where c is the specific poS(1+ qM RT) heat capacity of water, AT = 100 K,^ q^ is the specific heat of vapo- rization of water, T is its boiling temperature. 2.191. A = me (T — T o) RTIqM = 25 1, where c is the specific heat capacity of water, T is the initial vapour temperature equal to the water boiling temperature, as is seen from the hypothesis, q is the specific heat of vapour condensation. 2.192. d 4aMITOT = 0.2 am, where p is the density of water. 2.193. a = 71poYM/25TRT = 0.35 g/(s•cm2), where pc, is the standard atmospheric pressure. 2.194. p = pr2nRTIM = 0.9 nPa. 2.195. Ap = a/V2M = 1.7.104 atm. 2.196. pi pq.^ About 2.104 atm. 2.198. a = 27 /64R2T2r/Per (^) = 3.6 atm•12/mo12, b=118RT„Ip„. = 0.043 1/mol. 2.199. T7;,. = 3181 :1TcrIMper = 4.7 cm3/g. 2.200. (n 3/v2) (3v — 1) = 8T, T = 1.5.