Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

irodov_problems_in_general_physics_2011, Study Guides, Projects, Research of Physics

irodov_problems_in_general_physics_2011

Typology: Study Guides, Projects, Research

2010/2011

Uploaded on 01/07/2023

mo-salah
mo-salah ๐Ÿ‡บ๐Ÿ‡ธ

5

(3)

231 documents

1 / 5

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
1.70.
'1 V
-
21/(3W+
kg).
1.71.
(a) w
1
โ€”
("
1
1
โ€”
"
1
2) g-1-
2
m2wo
ยฑ m2
(b)
F =
rn
4
:
1
+
1
7:
(gโ€” w
0
).
1.72. w= 2g (2i โ€” sina)/(41 + 1).
1.73.
๎˜‰
=
4m
i
ni
2
-1-m
o
(m1โ€”
ins)
1
4m1m2+ mo
๎˜‰
+ m2)
5.
1.74.
F
ir
= 21mMI(M โ€” m) t
2
.
1.75.
t
=1/2/
(4 ยฑ Ti)/3g (2โ€” r() 1.4 s.
1.76.
H =
๎˜‰
/(1-1 + 4) = 0.6 m.
=
ml
๎˜‰
7
17m2
2
(g w0):
Fig. 4.
Fig. 5.
1.77.
W
A
=
gl(1
๎˜‰
cote a),
w
B
=
g/(tan a + cot a).
1.78. w=
g V
D(2+
k+
1.79.
w
mia
=
g (1 โ€” k)/(1
๎˜‰
k).
1.80. w
max
=
g (1
๎˜‰
k
cot a)/(cot a โ€”
k).
1.81.
w =
g
sin a cos a/(sin
2
a
๎˜‰
m
l
/m
2
).
1.82. w โ€”
๎˜‰
mg
sin a
M
2m (1โ€” cos a) '
1.83. (a) l(F)1= 2
-
1/ 2
mv2htR;
(b) l(F)1=
ma
c
.
1.84. 2.1, 0.7 and 1.5 kN.
1.85. (a)
w
๎˜‰
V1+
3 cos
2
0,
T =3mg
cos 0;
๎˜‰
(b)
T= mg j/3;
(c) cos 0=1/V "g,
๎˜‰
= 54.7ยฐ.
1.86.
๎˜‰
53ยฐ.
1.87. 0 = arccos (2/3) ^ 48ยฐ, v = V 2gR/3.
1.88. a = 1/(x/nuo
2
โ€” 1). Is independent of the rotation di-
rection.
1.89. r =R/2,
vmax =
1
/2
kgR.
1.90.
s =
1
/
2
R V (kg/w.0
2
โ€”1 =
60 m.
1.91. v C
a
V kg/a.
1.92.
T =
(cot 0 +
co
2
RIg) mg/2n.
1.93.
(a) Let us examine a small element of the thread in contact
with the pulley (Fig. 5). Since the element is weightless,
dT =
dF
j
,. = k dFโ€ž
and
dFโ€ž = T da.
Hence,
dTIT = k
da. Integrat-
pf3
pf4
pf5

Partial preview of the text

Download irodov_problems_in_general_physics_2011 and more Study Guides, Projects, Research Physics in PDF only on Docsity!

1.70. '1 V-21/(3W+ kg).

1.71. (a) w1 โ€”^ ("11 โ€” "12) g-1- 2m2wo ยฑ m

(b) F = rn4:+ 1 17: (gโ€” w0).

1.72. w= 2g (2i โ€” sina)/(41 + 1). 1.73. (^) = 4mini2 -1-mo (m1โ€” ins) (^1) 4m1m2+ mo (^) + m2) 5. 1.74. Fir= 21mMI(M โ€” m) t2. 1.75. t =1/2/ (4 ยฑ Ti)/3g (2โ€” r() 1.4 s. 1.76. H = /(1-1 + 4) = 0.6 m.

= (^) ml (^7) 17m2 2 (g w0):

Fig. 4. Fig. 5.

1.77. WA = gl(1 cote a),^ w B = g/(tan a + cot a). 1.78. w= g V D(2+^ k+ 1.79. wmia = g (1 โ€” k)/(1 k). 1.80. wmax = g (1 k cot a)/(cot a โ€”^ k). 1.81. w = g sin a cos a/(sin2a^ ml/m2). 1.82. w โ€”

mg sin a M 2m (1โ€” cos a) ' 1.83. (a) l(F)1= 2 -1/ 2 mv2htR;^ (b) l(F)1=^ mac. 1.84. 2.1, 0.7 and 1.5 kN. 1.85. (a) w V1+ 3 cos20, T =3mg cos 0; (b) T= mg j/3; (c) cos 0=1/V "g, = 54.7ยฐ. 1.86. 53ยฐ. 1.87. 0 = arccos (2/3) ^ 48ยฐ, v = V 2gR/3. 1.88. a = 1/(x/nuo2โ€” 1). Is independent of the rotation di- rection. 1.89. r =R/2, (^) vmax = 1/2 kgR. 1.90. s = 1/2R V (kg/w.02โ€”1 =^ 60 m. 1.91. v C a V kg/a. 1.92. T = (cot 0 + co2RIg) mg/2n. 1.93. (a) Let us examine a small element of the thread in contact with the pulley (Fig. 5). Since the element is weightless, dT = dF j,. = k dFโ€ž and^ dFโ€ž = T da.^ Hence,^ dTIT = k^ da. Integrat-

ing this equation, we obtain k^ (ln no)/n; (b) w=^ g โ€” lovoi +TO.

1.94. F = (mvโ€ž21R) cost a. 1.95. F = โ€”mco2r, where r is the radius vector of the particle relative to the origin of coordinates;

F - m (1)2V x2 + y2. 1.96. (a) Ap = mgt; (b) I Ap I = โ€”2m(vog)Ig. 1.97. (a) p = at3/6; (b) s = =--a-r4/12m. 1.98. s = (cot โ€” sin cot) Fo/ma)2, see Fig. 6. 1.99. t = n/o); s = 2F^ 01m(03; vmax = Foinuo. 1.100. (a) v=voe-trlm,^ 00;^ (b)^ v=vo โ€”srlm,

' 1.101. t =

h (vo โ€” v) vov In (vo/u) ' 1.102. s = โ€” a^2 tan a, vmax = 171a- sin a tan a Instruction. To reduce the equation to the form which is convenient to integrate, the acceleration must be represented as dv1dt^ and then a change of variables made according to the formula dt = dxlv. 1.103. s a (t โ€” to)31m, where to = kmgla is the moment of time at which the motion starts. At t < tothe distance is^ s =^ 0. 1.104. v' = vo/ kvVmg. 1.105. (a) v = (2F/mw)^ I sin (o)t/2)I; (b) As = 8Firnco2, (v) = 4F/nnuo. 1.106. v = vo/(1 + cos cp). Instruction. Here w,^ โ€”wx, and therefore v = โ€”vx^ const. From the initial condition it follows that const = vo. Besides, vx = v cos q. 1.107. w = [1 โ€” cos (11R)] Rgll.

1.108. (a) v = -1/2gfl /3; (b) cos % =

3 (1+ 2 )^ '^ where 1= = wo/g, 00 17ยฐ. 1.109. For n <1, including negative values. 1.110. When c02R > g, there are two steady equilibrium posi- tions: 01= 0 and 02= arccos^ (g1(02R).^ When OR^ <g,^ there is only one equilibrium position: 01= 0. As long as there is only one lower equilibrium position, it is steady. Whenever the second equi- librium position appears (which is permanently steady) the lower one becomes unsteady. 1.111. h z ((os21v) sin cp = 7 cm, where 0) is the angular veloc- ity of the Earth's rotation. 1.112. F = m g2 w4r 2ยฑ (211(0)2 = 8 N. 1.113. Feor = 2m0)2r 1/1 (vohor)2----- 2.8 N.

Off (^) fit ad Fig. 6.

Stotal

1.146. (al (^) Fir =mg [sin a + (w211 g) ccs al= (^) 6 N. (b) co< <V g (kโ€”^ tan a)// (1^ k^ tan cz) = 2 rad/s. 1.147. (a) V = (mivi m2v2)/(m1+ m2); (b) T = ฮผ (v 1 โ€” โ€” v2)212, where p, = m1m2 (ml-h m2). 1.148. E E mV2/2. 1.149. E = -I- v22)/2, where p. = mi.m2/(m1 m2). 1.150. p = Po mgt, where pc, = mvi m2v2, m = (^) m2; re = vot gt2/2, where v0= (m1v1 m2v2)/(ml (^) m2)โ€ข 1.151. ve = xV (^) xm2/(mi. ยฑ m2). 1.152. (a) /max = /0 Flx, (^) can = lo; (b) /max = (^) to + 2m1F/x (m1 + m2), /min = 4,โ€ข 1.153. (a) Al > 3mg/x; (b) h = (1 + xAl/mg)2mg/8x = 8mg/x. 1.154. v1= โ€”mv/(M โ€” m), v2 = Mv/(M โ€” , mM 1.155. vrear vo โ€” u; vform = vo -t- +no,^ U.

1.156. (1) viโ€” โ€” m+2m u;^ 2m (2) v2 โ€” (m+m 2M + 3m)(m)(m+ 2m) u,

V2k, = 1 -^1 -^ m/2 (M -1- m) >^ 1. 1.158. Ap = m y 2gh 1)/(71โ€” 1) = 0.2 kg -m/s. 1.159. (a) Iโ€”

m

jw+m I '; (b) Fโ€”

mM dv' M m dt โ€ข 1.160. 1 = m1'12M. 1.161. -c= (p cos aโ€” M 17-2g1 sin a)/Mg sin a. 1.162. (a) v = (2M/m) Vir sin (0/2); (b) 1โ€” m/M. 1.163. h = Mv2/2g (M m). 1.164. (1) A = โ€”Rgh,^ where p, =^ mM/(m M);^ (2) Yes. 1.166. v = 1.0i + 2.0j โ€” 4.0k, v 4.6 m/s. 1.167. AT = --p (v1โ€” v2)212, where p, = m1m2/(m1 m2). 1.168. (a) 11 = 2m (m

-I-m2); (b)^ =^ 4m^1 m^2 /(m^1 +^ m2)2- 1.169. (a) m 1 /m2= 1/3; (b) m1/m2= 1 + 2 cos e = 2.0. 1.170. 11 = 1/2cos2 a = 0.25. 1.171. (^) max= v (1 + -I/2 (1- 1)) =1.0 km per second. 1.172. Will continue moving in the same direction, although this time with the velocity v' = (1โ€” V1 โ€” 2i) v/2. For 11< 1 the velocity v' Tiv/2 = 5 cm/s. 1.173. AT IT = (1 mlM)^ tang 0^ m/M^ โ€” 1 =^ โ€”^ 40%. 1.174. (^) (a) p = IAA / 14. v:; (b) T '/211(v - Fv:). Here p.= = mim2/(mi+ m2)- 1.175. Sin 0max 1.176. v' = โ€”v (2 โ€” r12)/(6 โ€” r12). Respectively at smaller 11,

equal, or greater than V T. 1.178. Suppose that at a certain moment t the rocket has the mass m and the velocity v relative to the reference frame employed. Consider the inertial reference frame moving with the same velocity as the rocket has at a given moment. In this reference frame the momentum increment that the system "rocket-ejected portion of gas"

acquires during the time dt is equal to dp = m dv (^) dtโ€ขu = F dt. What follows is evident. 1.179. v = โ€”u In (mo/m). 1.180. m = moe-wt /u. 1.181. a = (u/vo) In (mo/m). 1.182. v = โ€”

F In m0 w (^) Rt โ€ข 11 me 1.183. v = Ft/m0(1 (^) tp,t/m0), w

nzoโ€” = F/m0(1 (^) Rtimor- 1.184. v (^) 2gh ln (11h). 1.185. N=2b V alb. 1.186. M = i/2mgvot2cos a; M = (mv:/2g) sine a cos a = = 37 kg โ€ข m2/s. 1.187. (a) Relative to all points of the straight line drawn at right angles to the wall through the point 0; (b) I AM I = 2 mv/ cos a. 1.188. Relative to the centre of the circle. I AM I = 2 V1 โ€” (g/&21)2 mgl/w. 1.189. I AM I = hmV. 1.190. M = maivgt2. 1.191. m = 2kr1/v22. 1.192. vo =1/-2g//cos O. 1.193. F = mcogr:Ir3. 1.194. M Z= Rmgt. 1.195. M = Rmgt sin a. Will not change. 1.196. M' = M โ€” [rot)]. In the case when p = 0, i.e. in the frame of the centre of inertia. 1.198. M = 1/3imvo. 1.199. Erna. mil/x102. The problem is easier to solve in the frame of the centre of inertia. 1.200. T = 23-iyM/v3= 225 days. 1.201. (a) 5.2 times; (b) 13 km/s, 2.2.10-4m/s2. 1.202. T = (r R)3/2yM. It is sufficient to consider the motion along the circle whose radius is equal to the major semi-axis of the given ellipse, i.e. (r R)12, since in accordance with Kepler's laws the period of revolution is the same. 1.203. Falling of the body on the Sun can be considered as the motion along a very elongated (in the limit, degenerated) ellipse whose major semi-axis is practically equal to the radius R of the Earth's orbit. Then from Kepler's laws, (2T/T)2 = (^) [(R12)1R13, where i is the falling time (the time needed to complete half a revo- lution along the elongated ellipse), T is the period of the Earth's revolution around the Sun. Hence, T = T/4112 = 65 days. 1.204. Will not change. 1.205. 1= f y M (T/231)2. 1.206. (a) U = โ€” ym1m2/r; (b) U = โ€”y (mM11) In + 11a); F yrnM I a (a +1). 288