Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Mathematical Analysis: Limits, Derivatives, and Integrals, Thesis of Game Theory

Various topics in mathematical analysis, including limits, derivatives, and integrals. Topics include limit laws, differentiation rules, and the Fundamental Theorem of Calculus. Examples include finding limits, derivatives, and integrals of functions using various techniques.

What you will learn

  • What is the Fundamental Theorem of Calculus and how is it used?
  • What is the limit of tan(x) as x approaches 0?
  • How do you find the derivative of a function using the limit definition?

Typology: Thesis

2019/2020

Uploaded on 05/27/2020

48655557745
48655557745 🇮🇳

1 document

1 / 5

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
è5Åq:
<Æ:
s2£§:
½Ó/BN@/<Ƨ pìr&hìr<Æ
׿çߦ
1Aá¤
y1lq SX:
ëH]j16£§s ´úܼ,d¦o×Ð ³ðlr¸. [y2&h]
(1) <Êú g(x)Hx=a\"f pìr Ô¦0pxstëß,<Êú
f(x) x=g(a)\"f pìr0pxs8¸,½+Ë$í<Êú
(fg)(x)Hx=a\"f pìr Ô¦0pxs. (F)
(2) <Êú f x=a\"f 5Åqs,fHx=a\"f pìr
0pxs. (F)
(3) ¿º <Êú fü<g\ @/K,f0=g0s,f=gs. (F)
(4) f(x) ½¨çß[a, a]\"f 5Åql<Êú(odd func-
tion)s,Za
a
f(x)dx = 0s. (T)
(5) f(x) = x|x|H(0,0)\"f /BG&h(inflection point)`¦°ú
H. (T)
(6) ëß{9 f0(c) = 0s¦ f00(c)<0s,fHx=c\"f FG
è°úכ(local minimum)`¦°úH. (F)
(7) /BGy=x23
2x4Hú¨î&hH(horizontal asymp-
tote)`¦°út ·ú§H. (T)
(8) y=|x|_ ¸<ÊúHz´Ãº^\"f 5Åqs. (F)
(9) ¿º <Êú f(x), g(x) x=a\"f 5Åqs,½+Ë$í<Êú
(fg)(x)¸ x=a\"f 5Åqs. (F)
(10) <Êú f pìr0pxs,&hìr0pxs. (T)
ëH]j2x+y= 1s ÅÒ#Q&.6£§<Êúpìr(implicit
differentiation)`¦s6x# dy
dx ,d2y
dx2\¦½¨r¸.[10&h]
·l)ª`¦pìr,
1
2x1/2+1
2y1/2y0= 0
Õª¼Ð,y0=y
x
"f,y00 =x+y
2x=1
2xx
pf3
pf4
pf5

Partial preview of the text

Download Mathematical Analysis: Limits, Derivatives, and Integrals and more Thesis Game Theory in PDF only on Docsity!

™è 5 Åq: †<Ɓ: s 2 £§:

†½Ó/BN@/†<Ɠ§ pìr&hìr†<Æ

׿çߖ “¦

1 Aá¤

yŒ™ 1 lq SX‰“:

ëH]j 1  6 £§s ´úÜ¼€ ©, d¦o€ זР³ðl rš¸. [yŒ• 2 &h]

(1) †<Êú g(x)H x = a\"f pìr Ô¦ 0 pxstëߖ, †<Êú f (x) x = g(a)\"f pìr 0 pxs8•¸, ½+Ë$í †<Êú (f ◦ g)(x)H x = a\"f pìr Ô¦ 0 pxs. (F)

(2) †<Êú f  x = a\"f ƒ 5 Åqs€, f H x = a\"f pìr 0 pxs. (F)

(3) ¿º †<Êú f ü< g\ @/K, f ′^ = g′s€, f = gs. (F)

(4) f (x) ½¨çߖ [−a, a]\"f ƒ 5 Åq“ l†<Êú(odd func- tion)s€,

∫ (^) a

−a

f (x)dx = 0s. (T)

(5) f (x) = x|x|H (0, 0)\"f /BG&h(inflection point)`¦ °ú H. (T)

(6) ëߖ{ 9  f ′(c) = 0s“¦ f ′′(c) < 0 s€, f H x = c\"f FG ™è°úכ(local minimum)`¦ °úH. (F)

(7) /BG‚ y = x

2 x − 4 H ú¨î &hH‚(horizontal asymp- tote)`¦ °út ·ú§H. (T)

(8) y = |x|_ •¸†<ÊúH z´Ãº„^‰\"f ƒ 5 Åqs. (F)

(9) ¿º †<Êú f (x), g(x) x = a\"f ƒ 5 Åqs€, ½+Ë$í †<Êú (f ◦ g)(x)•¸ x = a\"f ƒ 5 Åqs. (F)

(10) †<Êú f  pìr 0 pxs€, &hìr 0 pxs. (T)

ëH]j 2

x + √y = 1s ÅÒ#Q&’. 6 £§†<Êúpìr(implicit differentiation)`¦ s 6 x#Œ dy dx , d

(^2) y dx^2 \¦ ½¨ rš¸.[10&h]

·l) €ªœ`¦ pìr €,

1 2 x−^1 /^2 +

y−^1 /^2 y′^ = 0

ÕªQÙ¼–Ð, y′^ = −

√y √ x "f, y′′^ =

x + √y 2

x =^

2 x

x 

†½Ó/BN@/†<Ɠ§ pìr&hìr†<Æ

׿çߖ “¦

2 Aá¤

ëH]j 3 †<Êú y =

x sin (^1) x x 6 = 0 0 x = 0  x = 0\"f pìr

0 px“t óøÍZ> rš¸. [7&h]

·l) pìr_ &ñ _\ _K

f ′(0) = (^) hlim→ 0

h sin (^) h^1 h = lim h→ 0 sin

h

0 A_ FGôǓÉr ”>rF t ·ú§Ü¼Ù¼–Ð, †<Êú f H x = 0\"f p

ìrÔ¦ 0 pxs. 

ëH]j 4 ~½Ó&ñ d” 2 x − 1 − sin x = 0s &ñ SX‰ > ôÇ >h_ z´ H¦ f”¦ ˜Ðsrš¸. [8&h]

·l) f (x) = 2x − 1 − sin x ¿º€, f (0) = − 1 < 0, f (1) = 1 − sin 1 > 0 s. ÅÒ#Q” †<ÊúH ƒ 5 Åq†<Êú ½+Ë sÙ¼–Ð, f •¸ ƒ 5 Åq†<ÊúsÙ¼–Ð, ׿çߖ°úכ &ño\ K f H \P  2 ;½¨çߖ (0, 1) s\"f H`¦ °úH. ëߖ{ 9 , Hs ¿º >h s©œs€, 7 £¤, αü< β †<Êú f (x) = 0 ¿º Hs€, Roll &ñ o\ _K, f ′(c) = 0“ c \P 2 ;½¨ çߖ (α, β) s\ ”>rF #Œ ôÇ. ÕªQ, f ′(x) = 2 − cos x–Ð †½Ó©œ 1 ˜Ð ß¼. ÕªQÙ¼–Ð —¸íH. "f, z´H“Ér ôÇ >h ÷rs. 

†½Ó/BN@/†<Ɠ§ pìr&hìr†<Æ

׿çߖ “¦

4 Aá¤

ëH]j 7  6 £§`¦ ½¨ rš¸. [yŒ• 5 &h]

(1) (^) nlim→∞

n n^2 + 1^2

  • n n^2 + 2^2
  • · · · + n n^2 + n^2

·l)

n^ lim→∞

n n^2 + 1^2

n n^2 + 2^2

n n^2 + n^2

0

1 + x^2 dx

= tan−^1 x

1

0

π 4



√ dx e^2 x^ − 6 ·l) ex^ =

6 sec θ–Ð u¨ 8 Š € ïrd”“Ér ∫ √^1 e^2 x^ − 6

dx =

√^1

=

θ + C

=

√^1

sec−^1 √ex 6

+ C

dx x^4 − x^2

·l) ïrd”`¦ ÂÒìrìrú–Ð ¾º#Q Û¦€ ∫ dx x^2 (x^2 − 1)

x^2

x − 1

x + 1

dx

=

x

ln

∣∣^ x^ −^1 x + 1

∣∣ + C

™è 5 Åq: †<Ɓ: s 2 £§:

†½Ó/BN@/†<Ɠ§ pìr&hìr†<Æ

׿çߖ “¦

5 Aá¤

yŒ™ 1 lq SX‰“:

ëH]j 8 †<Êú f (x) = 2 +

∫ (^1) /x

1

tan−^1 tdt_ x = 1\"f

_ ‚+þAHd”(linearization)¦ s 6 xK"f f (1.01)¦ ½¨ 

rš¸. [5&h]

·l) f (1) = 2 s“¦, f ′(x) = − 1 x^2 tan−^1 xsÙ¼–Ð,

f ′(1) = − π 4.

"f, ‚+þAHd”“Ér L(x) = − π 4 (x − 1) + 2.

ÕªQÙ¼–Ð, f (1.01) ≈ L(1.01) = 2 − π 400

ëH]j 9 †<Êú y =

x \¦ x ≥ 1 “ ½¨çߖ\"f x»¡¤Ü¼–Ð r„r

& % 3 “Ér { 9 ^‰_ ^‰&h`¦ ½¨ rš¸. [5&h]

·l) { 9 ^‰_ ^‰&h V H

V =

1

π x^2 dx = π lim b→∞

∫ (^) b

1

dx x^2

= π lim b→∞

[

x

]b

1 = π

ëH]j 10 -q 30 “ €ªœ^o=óøÍ¦ [j 1 pxìrK"f €ªœ =åQ¦ θëߖ pu ¦9 ú–Ð\¦ ëߖ[þt9“¦ ôÇ. éߖ€_ €&hs þj@/ ÷& H θ_ °úכ¦ ½¨ rš¸. [10&h]

·l) €&h A\¦ θ\ ›'aôÇ d”ܼ–Ð  ?/€

A = 100(1 + cos θ) sin θ 0 ≤ θ ≤ π 2

þj@/°úכ¦ ½¨ l 0 AK, €ªœ =åQ°úכõ FG@/°úכ¦ q“§K˜Ð€ )a . FG@/°úכ“Ér A′^ = 0“ &hsÙ¼–Ð ½¨K˜Ð€ θ = π 3

. °úכ`¦ q“§K˜Ð€ þj@/°úכ“Ér FG@/&h\"f °úH. "f ½¨ “¦  H θH π 3