Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Laplace transform formula sheet, Cheat Sheet of Mathematics

General formulas are definition of transform, inverse transform, linearity, first shifting theorem, differentiation and integration function.

Typology: Cheat Sheet

2021/2022

Uploaded on 02/07/2022

gaqruishta
gaqruishta 🇺🇸

4.4

(18)

237 documents

1 / 6

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
248 CHAP. 6 Laplace Transforms
6.8 Laplace Transform: General Formulas
Formula Name, Comments Sec.
Definition of Transform
Inverse Transform
6.1
Linearity 6.1
s-Shifting
(First Shifting Theorem) 6.1
Differentiation of Function
6.2
Integration of Function
Convolution 6.5
t-Shifting
(Second Shifting Theorem) 6.3
Differentiation of Transform
Integration of Transform
6.6
fPeriodic with Period p
6.4
Project
16
l( f ) 1
1e
ps
p
0
e
st
f (t) dt
lef (t)
tf
s
F( s
) d s
l{tf (t)} ⫽⫺Fr(s)
l
1
{e
as
F (s)} f (ta) u(ta)
l{˛f (ta) u(ta)} e
as
F(s)
l( f * g)l( f )l(g)
t
0
f (tt)g(t) dt
( f * g)(t)t
0
f (t)g(tt) dt
let
0
f (t) dtf1
s l( f )
Áf
(n1)
(0)
l( f
(n)
)s
n
l( f ) s
(n1)
f (0) Á
l( f s)s
2
l( f ) sf (0) f r(0)
l( f r)sl( f ) f (0)
l
1
{F(sa)} e
at
f (t)
l{e
at
f (t)} F(sa)
l{af (t)bg(t)} al{f (t)} bl{g(t)}
f (t)l
1
{F(s)}
F(s)l{f (t)}
0
e
st
f (t) dt
c06.qxd 10/28/10 6:33 PM Page 248
pf3
pf4
pf5

Partial preview of the text

Download Laplace transform formula sheet and more Cheat Sheet Mathematics in PDF only on Docsity!

248 CHAP. 6 Laplace Transforms

6.8 Laplace Transform: General Formulas

Formula Name, Comments Sec.

Definition of Transform

Inverse Transform

Linearity 6.

s -Shifting (First Shifting Theorem) 6.

Differentiation of Function

Integration of Function

Convolution 6.

t -Shifting (Second Shifting Theorem)

Differentiation of Transform

Integration of Transform

f Periodic with Period p

Project 16

l( f ) 

1  e  ps^ 

p

0

e  stf ( t ) dt

l e

f ( t ) t

f  



s

F (  s ) d s 

l{ tf ( t )}   F r( s )

l^1 { e  asF ( s )}  f ( t  a ) u ( t  a )

l{ ˛ f ( t  a ) u ( t  a )}  e  asF ( s )

l( f (^) * g )  l( f )l( g )

t

0

f ( t  t) g (t) d t

( f * g )( t )  

t

0

f (t) g ( t  t) d t

l e 

t

0

f (t) d tf 

s l(^ f^ )

Á (^)  f ( n 1)(0)

l( f ( n ))  sn l( f )  s ( n 1) f (0)  Á

l( f s)  s^2 l( f )  sf (0)  f r(0)

l( f r)  s l( f )  f (0)

l^1 { F ( s  a )}  eatf ( t )

l{ eatf ( t )}  F ( s  a )

l{ af ( t )  bg ( t )}  a l{ f ( t )}  b l{ g ( t )}

f ( t )  l^1 { F ( s )}

F ( s )  l{ f ( t )}  



0

e  stf ( t ) dt

SEC. 6.9 Table of Laplace Transforms 249

6.9 Table of Laplace Transforms

For more extensive tables, see Ref. [A9] in Appendix 1.

Sec.

1 1 2 t 3 4 5 6 7 8 9

v^3

(v t  sin v t )

s^2 ( s^2  v^2 )

v^2

(1  cos v t )

s ( s^2  v^2 )

eat^ cos v t s  a ( s  a )^2  v^2

v e

(^1) at (^) sinh v t ( s  a )^2  v^2

cosh at s s^2  a^2

a sinh^ at

s^2  a^2

cos v t

s s^2  v^2

v sin^ v t

s^2  v^2

a  b

( aeat^  bebt ) s ( s  a )( s  b )

( a b )

a  b

( eat^  ebt )

( s  a )( s  b )

( a b )

( k )

t k ^1 eat

( s  a ) k^

( k  0)

( n  1)!

t n ^1 eat

( s  a ) n^

( n  1, 2, Á^ )

teat

( s  a )^2

eat

s  a

1 > sa^ ( a  0) t a ^1 >( a )

1 > s^3 >^221 t >p

1 > 1 s 1 > 1 p t

1 > sn^ ( n  1, 2, Á^ ) t n ^1 >( n  1)!

1 > s^2

1 > s

F ( s )  l{ ˛ f ( t )} f ( t )

(continued )

t 6.

t 6.

t 6.

x 6.

Table of Laplace Transforms (continued )

Sec.

App. Si( t ) A3.

s arccot^ s

t arctan sin v t

v s

t ln (1  cosh at )

s^2  a^2 s^2

t ln (1  cos v t )

s^2  v^2 s^2

t ln ( ebt^  eat )

s  a s  b

ln t  g (g  0.5772) g 5.

s ln^ s

F ( s )  l{ ˛ f ( t )} f ( t )

Chapter 6 Review Questions and Problems 251

1. State the Laplace transforms of a few simple functions from memory. 2. What are the steps of solving an ODE by the Laplace transform? 3. In what cases of solving ODEs is the present method preferable to that in Chap. 2? 4. What property of the Laplace transform is crucial in solving ODEs? 5. Is? ? Explain. 6. When and how do you use the unit step function and Dirac’s delta? 7. If you know , how would you find ? 8. Explain the use of the two shifting theorems from memory. 9. Can a discontinuous function have a Laplace transform? Give reason. 10. If two different continuous functions have transforms, the latter are different. Why is this practically important? 11–19 LAPLACE TRANSFORMS Find the transform, indicating the method used and showing the details. 11. 12. 13. sin^2 (^12 p t ) 14. 16 t^2 u ( t  14 )

5 cosh 2 t  3 sinh t e  t (cos 4 t  2 sin 4 t )

l^1 { F ( s )> s^2 }

f ( t )  l^1 { F ( s )}

l{ f ( t ) g ( t )}  l{ f ( t )}l{ g ( t )}

l{ f ( t )  g ( t )}  l{ f ( t )}  l{ g ( t )}

**15. 16.

19.**

20–28 INVERSE LAPLACE TRANSFORM Find the inverse transform, indicating the method used and showing the details:

**20. 21.

  1. 27.**

28.

29–37 ODEs AND SYSTEMS Solve by the Laplace transform, showing the details and graphing the solution: 29.

30. y s  16 y  4 d( t  p), y (0)  1, y r(0)  0

y s  4 y r  5 y  50 t , y (0)  5, y r(0)   5

3 s s^2  2 s  2

3 s  4 s^2  4 s  5

2 s  10 s^3

e ^5 s

6( s  1) s^4

s^2  6. ( s^2  6.25)^2

v cos u  s sin u s^2  v^2

1 16 s^2  s  (^12)

s  1 s^2

e  s

s^2  2 s  8

12 t (^) * e ^3 t

t cos t  sin t (sin v t ) * (cos v t )

et >^2 u ( t  3) u ( t  2 p) sin t

C H A P T E R 6 R E V I E W Q U E S T I O N S A N D P R O B L E M S

31.

32.

33. 34.

35.

36.

37.

38–45 MASS–SPRING SYSTEMS, CIRCUITS,

NETWORKS

Model and solve by the Laplace transform:

38. Show that the model of the mechanical system in Fig. 149 (no friction, no damping) is

Fig. 149. System in Problems 38 and 39

39. In Prob. 38, let . Find the solution satisfying the ini- tial conditions . 40. Find the model (the system of ODEs) in Prob. 38 extended by adding another mass and another spring of modulus in series. 41. Find the current in the RC -circuit in Fig. 150, where if if and the initial charge on the capacitor is 0.

Fig. 150. RC -circuit

R C

v ( t )

v ( t )  40 V t  4,

R  10 , C  0.1 F, v ( t )  10 t V 0 t 4,

i ( t )

k 4

m 3

y 2 r(0)  1 meter>sec

y 1 (0)  y 2 (0)  0, y 1 r(0)  1 meter>sec,

k 2 ^ 40 kg>sec^2

m 1  m 2  10 kg, k 1  k 3  20 kg>sec^2 ,

(^0) y 1 k 1 k 2 k 3

(^0) y 2

m 2 ˛˛ y 2 s   k 2 (˛˛ y 2  y 1 )  k 3 ˛ y 2 ).

m 1 ˛˛ y 1 s   k 1 ˛˛˛ y 1  k 2 (˛˛ y 2  y 1 )

y 1 (0)  1, y 2 (0)  0

y 1 r  y 2  u ( t  p), y 2 r   y 1  u ( t  2 p),

y 2 (0)   4

y 1 r  2 y 1  4 y 2 , y 2 r  y 1  2 y 2 , y 1 (0)  4,

y 2 (0)  0

y 1 r  2 y 1  4 y 2 , y 2 r  y 1  3 y 2 , y 1 (0)  3,

y 2 (0)  0

y 1 r  y 2 , y 2 r   4 y 1  d( t  p), y 1 (0)  0,

y s  3 y r  2 y  2 u ( t  2), y (0)  0, y r(0)  0

y r(0)  0

y s  4 y  d( t  p)  d( t  2 p), y (0)  1,

y r(0)   1

y s  y r  2 y  12 u ( t  p) sin t , y (0)  1,

252 CHAP. 6 Laplace Transforms

42. Find and graph the charge and the current in the LC -circuit in Fig. 151, assuming if if , and zero initial current and charge. 43. Find the current in the RLC -circuit in Fig. 152, where

and current and charge at are zero.

Fig. 151. LC -circuit Fig. 152. RLC -circuit

44. Show that, by Kirchhoff’s Voltage Law (Sec. 2.9), the currents in the network in Fig. 153 are obtained from the system

Solve this system, assuming that , .

Fig. 153. Network in Problem 44

45. Set up the model of the network in Fig. 154 and find the solution, assuming that all charges and currents are 0 when the switch is closed at. Find the limits of and as , (i) from the solution, (ii) directly from the given network.

Fig. 154. Network in Problem 45

L = 5 H

Switch

C = 0.05 F

i 1 i 2 V

i 1 ( t ) i 2 ( t ) t : 

t  0

v ( t )

L

R C

i 1 i 2

C  0.05 F, v  20 V, i 1 (0)  0, i 2 (0)  2 A

R  10 , L  20 H

R ( i 2 r  i 1 r) 

1 C i 2  0.

Li 1 r  R ( i 1  i 2 )  v ( t )

R

C

L

v ( t )

C L

v ( t )

t  0

R  160 , L  20 H, C  0.002 F, v ( t )  37 sin 10 t V,

i ( t )

v ( t )  1  e  t 0 t p, v ( t )  0 t  p

L  1 H, C  1 F,

q ( t ) i ( t )