
























Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
problem of laplace transformation
Typology: Study notes
1 / 32
This page cannot be seen from the preview
Don't miss anything!
Example: Find 𝑳 {𝒄𝒐𝒔 𝒂𝒕−𝒄𝒐𝒔 𝒃𝒕𝒕 }
Solution: 𝐿{𝑐𝑜𝑠 𝑎𝑡 − 𝑐𝑜𝑠 𝑏𝑡} = 𝐿{𝑐𝑜𝑠 𝑎𝑡} − 𝐿{𝑐𝑜𝑠 𝑏𝑡} = (^) 𝑠 (^2) +𝑎𝑠 2 − (^) 𝑠 (^2) +𝑏𝑠 2
∞ 𝑠 = [^12 𝑙𝑜𝑔 (𝑠^2 + 𝑎^2 ) − 12 𝑙𝑜𝑔 (𝑠^2 + 𝑏^2 )]𝑠
∞
(^2) +𝑎 2 𝑠^2 +𝑏^2 ]] 𝑠
∞ = 12 [𝑙𝑜𝑔 [1+𝑎
(^2) /𝑠 2 1+𝑏^2 /𝑠^2 ]] 𝑠
∞
1+𝑎𝑠 22 1+𝑏𝑠^22
2 𝑠^2 1 + 𝑏
2 𝑠^2
∞ 0
∞ 0
Example: Find 𝐿 {∫ 𝑒 0 𝑡 −𝑡^ 𝑠𝑖𝑛 𝑡𝑡 𝑑𝑡}
Solution : We know that
𝐿{𝑠𝑖𝑛 𝑡} = (^) 𝑠 (^21) +1 = 𝑓(𝑠).
Now by division rule i.e. if 𝐿{𝑓(𝑡)} = 𝑓(𝑠), then 𝐿 {𝑓(𝑡)𝑡 } = ∫𝑠 ∞𝑓(𝑠)𝑑𝑠
∴ 𝐿 {
∞ 𝑠
∞ 𝑠
∴ 𝐿 {𝑒−𝑡^ 𝑠𝑖𝑛 𝑡𝑡 } = 𝑐𝑜𝑡−1(𝑠 + 1) by first shifting property 𝐿{𝑒𝑎𝑡𝑓(𝑡)} = 𝑓(𝑠 − 𝑎)
∴ 𝐿 {∫ 𝑒 0 𝑡 −𝑡^ 𝑠𝑖𝑛 𝑡𝑡 𝑑𝑡} = (^1) 𝑠 𝑐𝑜𝑡−1(𝑠 + 1) by integral rule 𝐿 {∫ 𝑓(𝑡) 0 𝑡 𝑑𝑡} = (^1) 𝑠 𝑓(𝑠)
Example: Find 𝐿{(𝒆𝒂𝒕^ − 𝒄𝒐𝒔 𝒃𝒕)/𝒕}
Solution : We know that
𝐿{𝑓(𝑡)} = 𝐿{𝑒𝑎𝑡^ − 𝑐𝑜𝑠 𝑏𝑡} = 𝐿{𝑒𝑎𝑡^ } − 𝐿{𝑐𝑜𝑠 𝑏𝑡} =
Now, 𝑓(𝑡) = 2𝑡^ = 𝑒𝑙𝑜𝑔2𝑡 = 𝑒𝑡.𝑙𝑜𝑔2^ = 𝑒𝑙𝑜𝑔2.𝑡
∴ 𝐿{𝑓(𝑡)} = 𝐿{𝑒𝑙𝑜𝑔2.𝑡} =
Now, 𝑔(𝑡) = 𝑐𝑜𝑠 2𝑡−𝑐𝑜𝑠 3𝑡𝑡
𝐿{𝑐𝑜𝑠 2𝑡 − 𝑐𝑜𝑠 3𝑡} =
∞ 𝑠
𝑠
∞
Now, ℎ(𝑡) = 𝑡 𝑠𝑖𝑛 𝑡
𝐿{𝑠𝑖𝑛 𝑡} = (^) 𝑠 (^21) +1,
Then 𝐿{ 𝑡 𝑠𝑖𝑛 𝑡} = − (^) 𝑑𝑠𝑑 ( (^) 𝑠 (^21) +1) = (^) (𝑠 2 2𝑠+1) 2
Example. Find inverse Laplace Transform of 𝑓(𝑠) = 𝑠
2 (𝑠−2)^3.
Solution. Clearly,
𝑠^2 (𝑠 − 2)^3 =^
On comparing the coefficients of different powers of 𝑠, we get
⇒ 𝐴 = 1 −4𝐴 + 𝐵 = 0 ⇒ 𝐵 = 4 4𝐴 − 2𝐵 + 𝐶 = 0 ⇒ 𝐶 = 4
⇒
Now, we know that
𝐿{sin 𝑎𝑡} =
𝑎 sin 𝑎𝑡
⇒ 𝐿−1^ {
𝑎 sin 𝑎𝑡)
𝑎. 𝑡 cos 𝑎𝑡 − 1. sin 𝑎𝑡 𝑎^2 )
𝑎. 𝑡 cos 𝑎𝑡 − 1. sin 𝑎𝑡 𝑎^2 )
⇒ 𝑳−𝟏^ {
4 sin 4𝑡 − 4 (
sin 4𝑡 − 4𝑡 cos 4𝑡
⇒ 𝐿−1^ {
4 sin 4𝑡 − (
sin 4𝑡 − 4𝑡 cos 4𝑡 32 )
⇒ 𝐿−1^ {
32 sin 4𝑡 +
8 𝑡 cos 4𝑡
Example. Find inverse Laplace Transform of 𝑓(𝑠) = (^) (𝒔−𝟏)(𝒔𝟓𝒔+𝟑𝟐+𝟐𝒔+𝟓).
Solution. Clearly,
5𝑠 + 3 (𝑠 − 1)(𝑠^2 + 2𝑠 + 5) =^
On comparing the coefficients of different powers of 𝑠, we get
𝐴 + 𝐵 = 0
2𝐴 − 𝐵 + 𝐶 = 5
⇒ 3𝐴 + 𝐶 = 5
5𝐴 − 𝐶 = 3
Example. Find inverse Laplace Transform of 𝑓(𝑠) = (^) 𝒔𝟒+𝟒𝒂𝒔 𝟒.
Solution. Clearly, 𝑠 𝑠^4 + 4𝑎^4 =^
⇒ (^) (𝑠 (^2) + 2𝑎 (^2) + 2𝑎𝑠)(𝑠𝑠 (^2) + 2𝑎 (^2) − 2𝑎𝑠) =
(𝑠^2 + 2𝑎^2 − 2𝑎𝑠)(𝐴𝑠 + 𝐵) + (𝑠^2 + 2𝑎^2 + 2𝑎𝑠)(𝐶𝑠 + 𝐷) (𝑠^2 + 2𝑎^2 + 2𝑎𝑠)(𝑠^2 + 2𝑎^2 − 2𝑎𝑠)
On comparing the coefficients of different powers of 𝑠, we get
(1) (^) 0 = 𝐴 + 𝐶, (2) 0 = −2𝑎𝐴 + 𝐵 + 2𝑎𝐶 + 𝐷
(3) (^) 0 = 2𝑎^2 𝐴 − 2𝑎𝐵 + 2𝑎^2 𝐶 + 2𝑎𝐷
(4) (^) 1 = 2𝑎^2 𝐵 + 2𝑎^2 𝐷 ⇒ 𝐵 + 𝐷 = 1 2𝑎^2
From (2) and (4), we get
(5) (^) 0 = −𝐴 + 𝐶
Again from (1) and (5), we get
𝐴 = 𝐶 = 0
Now, from (3), we get
0 = −𝐵 + 𝐷 ⇒ 𝐵 = 𝐷
Thus, from (4), we get
2𝐵 = (^) 2𝑎^12 ⇒ 𝐵 = (^) 4𝑎^12 and so 𝐷 = (^) 4𝑎^12.
Example. Find the inverse Laplace transform (^) 𝑠 (^3) −𝑎^13.
Now , 𝑠^3 − 𝑎^3 = (𝑠 − 𝑎)(𝑠^2 + 𝑎𝑠 + 𝑎^2 )
Comparing the different powers of ‘s’.
𝐴 + 𝐵 = 0 (1)
𝑎𝐴 − 𝑎𝐵 + 𝐶 = 0 (2)
𝑎^2 𝐴 − 𝑎𝐶 = 1 (3)
From (1), 𝐵 = −𝐴
Again from (2), 2𝑎𝐴 + 𝐶 = 0 ⇒ 𝐶 = −2𝑎𝐴
Now from (3), 𝑎^2 𝐴 + 2𝑎^2 𝐴 = 1 ⇒ 𝐴 = (^) 3𝑎^12
∴ 𝐵 = − (^) 3𝑎^12 and 𝐶 = − (^) 3𝑎^2
Thus,
Now, 𝐿−1^ { (^) (𝑠 (^2) +𝑎𝑠+𝑎𝑠+2𝑎 (^2) )} = 𝐿−1^ {
𝑠+𝑎 2 +3𝑎 2 (𝑠+𝑎 2 )^2 +3𝑎 42
𝑡 0
=
𝑡 0
We know that 𝟐 𝐜𝐨𝐬 𝑨 𝐬𝐢𝐧 𝑩 = 𝒔𝒊𝒏 (𝑨 + 𝑩) − 𝐬𝐢𝐧(𝑨 − 𝑩)
∴ 2 𝑐𝑜𝑠 𝒂𝒖 𝑠𝑖𝑛 𝒂(𝒕 − 𝒖) = 𝑠𝑖𝑛(𝑎𝑢 + 𝑎𝑡 − 𝑎𝑢) − sin(𝑎𝑢 − 𝑎𝑡 + 𝑎𝑢) = sin 𝑎𝑡 − sin(2𝑎𝑢 − 𝑎𝑡)
2𝑎 ∫ [sin 𝑎𝑡 − sin(2𝑎𝑢 − 𝑎𝑡)]𝑑𝑢
𝑡 0 = (^) 2𝑎^1 [∫ sin 𝑎𝑡 𝑑𝑢 − ∫ sin(2𝑎𝑢 − 𝑎𝑡)𝑑𝑢 0 𝑡 0 𝑡 ]
= (^) 2𝑎^1 [sin 𝑎𝑡 (𝑢) 0 𝑡^ − (^) 2𝑎^1 (cos(2𝑎𝑢 − 𝑎𝑡)) 0 𝑡^ ]
= (^) 2𝑎^1 [t sin 𝑎𝑡 − (^) 2𝑎^1 (cos 𝑎𝑡 − cos 𝑎𝑡)] = (^) 𝟐𝒂𝟏 𝐭 𝐬𝐢𝐧 𝒂𝒕
Verification:
Again, 𝐿{sin 𝑎𝑡} = (^) 𝑠 (^2) +𝑎𝑎 2 ⇒ 𝐿{𝑡 sin 𝑎𝑡} = − (^) 𝑑𝑠𝑑 { (^) 𝑠 (^2) +𝑎𝑎 2 } = (^) (𝑠 2 2𝑎𝑠+𝑎 (^2) ) 2
∴ 𝐿 {
2𝑎 t sin 𝑎𝑡} =
2𝑎 𝐿{t sin 𝑎𝑡} =
Example. Apply Convolution theorem to evaluate 𝐿−1^ {(𝒔 (^) 𝟐+𝟐𝟓)(𝒔𝒔 𝟐+𝟏𝟔)}.
Solution. We have
𝐿−1^ {
Thus we have
𝐿−1{𝑓(𝑠)} = 𝐿−1^ { (^) (𝑠 (^2) +5𝑠 (^2) )} = 𝑐𝑜𝑠 5𝑡 = 𝑓(𝑡) and 𝐿−1{𝑔(𝑠)} = 𝐿−1^ { (^) (𝑠 (^2) +4^12 )} = 14 𝑠𝑖𝑛 4𝑡 = 𝑔(𝑡)
∴ 𝑓(𝑢) = 𝑐𝑜𝑠 5𝑢 and 𝑔(𝑡 − 𝑢) = 14 sin 4(𝑡 − 𝑢)
From Convolution theorem,
𝐿−1{𝑓(𝑠). 𝑔(𝑠)} = 𝑓(𝑡) ∗ 𝑔(𝑡) = ∫ 𝑓(𝑢)𝑔(𝑡 − 𝑢)𝑑𝑢
𝑡 0
⇒ 𝐿−1^ {
𝑡 0
= ∫ 𝑐𝑜𝑠 5𝑢
𝑡 0
=
𝑡 0
We know that 𝟐 𝐜𝐨𝐬 𝑨 𝐬𝐢𝐧 𝑩 = 𝒔𝒊𝒏 (𝑨 + 𝑩) − 𝐬𝐢𝐧(𝑨 − 𝑩)
Example. Apply Convolution theorem to evaluate 𝐿−1^ { (^) (𝒔𝟐+𝟒𝒔+𝟏𝟑)𝟏 𝟐}.
Solution. We have
(𝑠^2 + 4𝑠 + 13)^2 = [(𝑠 + 2)^2 + 3^2 ]^2
Now, 𝐿−1^ { (^) (𝑠 (^2) +4𝑠+13)^12 } = 𝐿−1^ { (^) [(𝑠+2)^12 +3 (^2) ] 2 } = 𝑒−2𝑡𝐿−1^ { (^) (𝑠 (^2) +3^12 ) 2 } = 𝑒−2𝑡𝐿−1^ {(𝑠 (^2) +3^12 ). (^) (𝑠 (^2) +3^12 )}
Clearly, 𝐿−1^ { (^) (𝑠 (^2) +3^12 )} = 13 𝑠𝑖𝑛 3𝑡 = 𝑓(𝑡) = 𝑔(𝑡)
∴ 𝑓(𝑢) = 13 𝑠𝑖𝑛 3𝑢 and 𝑔(𝑡 − 𝑢) = 13 𝑠𝑖𝑛 3(𝑡 − 𝑢)
From Convolution theorem,
𝐿−1^ { (^) (𝑠 (^2) +3^12 ). (^) (𝑠 (^2) +3^12 )} = 𝑓(𝑡) ∗ 𝑔(𝑡) = ∫ 𝑓(𝑢)𝑔(𝑡 − 𝑢)𝑑𝑢 0 𝑡 =∫ 0 𝑡^13 𝑠𝑖𝑛 3𝑢 13 𝑠𝑖𝑛 3(𝑡 − 𝑢)𝑑𝑢
𝑡 0
𝑡 0
We know that 𝟐 𝐬𝐢𝐧 𝑨 𝐬𝐢𝐧 𝑩 = 𝒄𝒐𝒔 (𝑨 − 𝑩) − 𝐜𝐨𝐬(𝑨 + 𝑩)
∴ 2 𝑠𝑖𝑛 3𝑢 𝑠𝑖𝑛 3(𝑡 − 𝑢) = cos (3𝑢 − 3𝑡 + 3𝑢) − cos(3𝑢 + 3𝑡 − 3𝑢) = cos(6𝑢 − 3𝑡) − cos 3𝑡
∴ 𝐿−1^ { (^) (𝑠 (^2) + 3^12 ). (^) (𝑠 (^2) + 3^12 )} = 18 1 ∫ [cos(6𝑢 − 3𝑡) − cos 3𝑡]𝑑𝑢 = 18 1 [∫ cos(6𝑢 − 3𝑡)
𝑡 0
du − ∫ cos 3𝑡
𝑡 0
𝑑𝑢]
𝑡 0 = 181 [sin(6𝑢−3𝑡) 6 − cos 3t. 𝑢] 0
𝑡 = 181 [{sin 3𝑡 6 − cos 3𝑡. 𝑡} − {− sin 3𝑡 6 − cos 3𝑡 .0}]
=
sin 3𝑡 6 − cos 3𝑡. 𝑡 +
sin 3𝑡 6 ] =
sin 3𝑡 3 − 𝑡 cos 3𝑡)
=
(sin 3𝑡 − 3𝑡 cos 3𝑡)
(sin 3𝑡 − 3𝑡 cos 3𝑡)
Example. Apply Convolution theorem to evaluate 𝐿−1^ {(𝒔+𝒂)(𝒔+𝒃) 𝟏 }
Solution. We have
𝐿−1^ {
where 𝑓(𝑠) = (^) (𝑠+𝑎)^1 , 𝑔(𝑠) = (^) (𝑠+𝑏)^1
Then, we have
𝐿−1{𝑓(𝑠)} = 𝐿−1^ { (^) (𝑠+𝑎)^1 } = 𝑒−𝑎𝑡^ = 𝑓(𝑡) and 𝐿−1{𝑔(𝑠)} = 𝐿−1^ { (^) (𝑠+𝑏)^1 } = 𝑒−𝑏𝑡^ = 𝑔(𝑡)