Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Understanding the Impact of Climate Change on Agriculture, Lecture notes of Mathematics

The effects of climate change on agricultural productivity, focusing on extreme weather events, changing precipitation patterns, and the potential for adaptation strategies. It provides insights into the challenges farmers face in adapting to these changes and the role of scientific research in developing sustainable agricultural practices.

Typology: Lecture notes

2020/2021

Uploaded on 05/24/2021

johnatan
johnatan 🇺🇸

4

(29)

280 documents

1 / 112

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Lesson 8
Contour integration
1
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17
pf18
pf19
pf1a
pf1b
pf1c
pf1d
pf1e
pf1f
pf20
pf21
pf22
pf23
pf24
pf25
pf26
pf27
pf28
pf29
pf2a
pf2b
pf2c
pf2d
pf2e
pf2f
pf30
pf31
pf32
pf33
pf34
pf35
pf36
pf37
pf38
pf39
pf3a
pf3b
pf3c
pf3d
pf3e
pf3f
pf40
pf41
pf42
pf43
pf44
pf45
pf46
pf47
pf48
pf49
pf4a
pf4b
pf4c
pf4d
pf4e
pf4f
pf50
pf51
pf52
pf53
pf54
pf55
pf56
pf57
pf58
pf59
pf5a
pf5b
pf5c
pf5d
pf5e
pf5f
pf60
pf61
pf62
pf63
pf64

Partial preview of the text

Download Understanding the Impact of Climate Change on Agriculture and more Lecture notes Mathematics in PDF only on Docsity!

Lesson 8

Contour integration

  • (^) Last lecture we talked about expansion in Taylor series:
  • (^) We also discussed analytic functions
  • (^) This lecture we will discuss contour integration
  • (^) This will show that analyticity in the unit circle is equivalent to having a Taylor series
  • (^) We will also look into Laurent series

f (z) =

k=

fkz

k

f (z) =

k=

fkz

k

  • (^) A curve in the complex plane is defined by

a map from an interval I = ( a , b ):

where 0.4 0.5 0.6 0.

= M (I) M : I C

  • (^) A curve in the complex plane is defined by

a map from an interval I = ( a , b ):

where

= 0.5^ 1.0^ 1.5^ 2.0^ 2.

    1. 0.4 0.5 0.6 0.

= M (I) M : I C

  • (^) A curve in the complex plane is defined by

a map from an interval I = ( a , b ):

  • (^) A Jordon curve is a curve which is
    • (^) Closed: it forms a loop M (a) = M (b) where

= 0.5^ 1.0^ 1.5^ 2.0^ 2.

    1. 0.4 0.5 0.6 0.

= M (I) M : I C

  • (^) A curve in the complex plane is defined by

a map from an interval I = ( a , b ):

  • (^) A Jordon curve is a curve which is
    • (^) Closed: it forms a loop M (a) = M (b)
    • (^) Simply connected: it does not intersect

itself (except at the endpoints)

where

= 0.5^ 1.0^ 1.5^ 2.0^ 2.

    1. 0.4 0.5 0.6 0.

= M (I) M : I C

  • (^) A curve in the complex plane is defined by

a map from an interval I = ( a , b ):

  • (^) A Jordon curve is a curve which is
    • (^) Closed: it forms a loop M (a) = M (b)
    • (^) Simply connected: it does not intersect

itself (except at the endpoints)

  • (^) Oriented: it has a left and right
  • (^) Sufficiently smooth: M is continuously

differentiable

where

= 0.5^ 1.0^ 1.5^ 2.0^ 2.

    1. 0.4 0.5 0.6 0.

= M (I) M : I C

  • (^) A contour in the complex plane is defined

by a finite number of smooth curves

  • (^) A Jordon contour is a contour which is
    • (^) Closed
    • (^) Simply connected
    • (^) Oriented
    • (^) Sufficiently smooth: the contour is

continuous and piecewise differentiable

Example 0.3 0.5 0.6 0.7 0.8 0.9 1.

ˆ 0IX M *

1

[I] HI½RIEGYVZI = M (I)

ˆ 'SRXSYVMRXIKVEXMSRSZIVXLIGYVZI MWHI½RIHF]

f (z) /z =

b a

f (M (x))M

(x) /x

ˆ 0IX M 1 ,... , M *

1

[I] HI½RIEGSRXSYV

= 1 · · · = M 1 (I) · · · M(I)

ˆ 'SRXSYVMRXIKVEXMSRSZIVXLIGSRXSYV MWHI½RIHTMIGI[MWI

f (z) /z =

1

f (z) /z + · · · +

f (z) /z

ˆ ;LIR MWE.SVHERGSRXSYV [IHIRSXI

f (z) /z =

f (z) /z

ˆ 0IX M *

1

[I] HI½RIEGYVZI = M (I)

ˆ 'SRXSYVMRXIKVEXMSRSZIVXLIGYVZI MWHI½RIHF]

f (z) /z =

b a

f (M (x))M

(x) /x

ˆ 0IX M 1 ,... , M *

1

[I] HI½RIEGSRXSYV

= 1 · · · = M 1 (I) · · · M(I)

ˆ 'SRXSYVMRXIKVEXMSRSZIVXLIGSRXSYV MWHI½RIHTMIGI[MWI

f (z) /z =

1

f (z) /z + · · · +

f (z) /z

ˆ ;LIR MWE.SVHERGSRXSYV [IHIRSXI

f (z) /z =

f (z) /z

ˆ 2S[GSRWMHIVXLIGYVZI EWP]MRKMR R

2  PIX = M (T) [LIVI M () = (x(), y()) JSV x : T R ERH y : T R WSXLEX M : R 2 ˆ 6IGEPP E PMRIMRXIKVEP MR R 2 SZIVXLIGYVZI MWHI½RIHF] (u(x, y) /x + v(x, y) /y) =

(u(M ())x () + v(M ())y () /

9

ˆ 2S[GSRWMHIVXLIGYVZI EWP]MRKMR R

2  PIX = M (T) [LIVI M () = (x(), y()) JSV x : T R ERH y : T R WSXLEX M : R 2 ˆ 6IGEPP E PMRIMRXIKVEP MR R 2 SZIVXLIGYVZI MWHI½RIHF] (u(x, y) /x + v(x, y) /y) =

(u(M ())x () + v(M ())y () / ˆ ;IGERXLYWVIGEWXGSQTPI\GSRXSYVMRXIKVEXMSREWPMRIMRXIKVEXMSRJSV f (z) = u(z) + Bv(z) f (z) /z =

f (M ())M () /

ˆ 2S[GSRWMHIVXLIGYVZI EWP]MRKMR R

2  PIX = M (T) [LIVI M () = (x(), y()) JSV x : T R ERH y : T R WSXLEX M : R 2 ˆ 6IGEPP E PMRIMRXIKVEP MR R 2 SZIVXLIGYVZI MWHI½RIHF] (u(x, y) /x + v(x, y) /y) =

(u(M ())x () + v(M ())y () / ˆ ;IGERXLYWVIGEWXGSQTPI\GSRXSYVMRXIKVEXMSREWPMRIMRXIKVEXMSRJSV f (z) = u(z) + Bv(z) f (z) /z =

f (M ())M () / =

[u(M ())x () v(M ())y () + B (u(M ())y () + v(M ())x ())] / =

(u /x v /y) + B

(v /x + u /y)

h?2Q`2K  +VIIR WXLISVIQ

7YTTSWIXLEX u, v ERHXLIMVTEVXMEPHIVMZEXMZIWEVIGSRXMRYSYWXLVSYKLSYXEWMQTP]

GSRRIGXIHHSQEMR D [LSWIFSYRHEV]MW  SVMIRXIHMRXLITSWMXMZI[E] XLIPIJXLERH

WMHISJ MWMRWMHI D  8LIR

(u /x + v /y) =

D

u

x

v

y

/x /y