Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Probability Theory: Bounds and Transformations, Exercises of Probability and Statistics

Solutions to various probability problems, including exact and chebyshev bounds, linear transformations, and markov bounds. It covers topics such as pmf, cdf, and pdf of random variables, as well as geometric progressions and integrals.

Typology: Exercises

2011/2012

Uploaded on 08/03/2012

anandini
anandini 🇮🇳

4.7

(9)

123 documents

1 / 7

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
[ ]
( )
1
01010
2
Xm
PXmPPZQ
σ

<=<==−=


[ ] [ ]
XmXm
PXmkPXmkPXmkPkPk
σσσ
σσ
−−


>=>+<=>+<−



[
]
[
]
(
)
(
)
(
)
(
)
(
)
(
)
1112
PZkPZkQkQkQkQkQk
=>+<=+−−=+−=
2
3
5
7
k
k
k
k
k
=
×=
=×=
×=
×=
[ ] [ ]
( )
1
3
5
7
10 1.28
10 3.09
10 4.26
10 5.2
k
k
Xm
PXmkPkPZkQk k
k
σσ
=
=

>+=>=>==
 =
=
( )
2
x
X
fxe
α
α
=
The quantizer is like the one in figure 3.15 page 120.
Problem 2: [
GAR
]
3.51
Problem 1: [
GAR
]
3.44
docsity.com
pf3
pf4
pf5

Partial preview of the text

Download Probability Theory: Bounds and Transformations and more Exercises Probability and Statistics in PDF only on Docsity!

[ ] ( )

X m P X m P P Z Q σ

[ ] [ ]

X m X m P X m k σ P X m k σ P X m k σ P k P k σ σ

 −^   − 

= P Z [ > k (^) ] + P Z [ < − k (^) ] = Q k ( (^) ) + 1 − Q (^) ( − k (^) ) = Q k ( (^) ) + 1 − (^) ( 1 − Q k ( (^) )) = 2 Q k ( )

2

3

5

7

k

k

k

k

k

^ =

 ×^ =

=  × =

× =

 × =

[ ] [ ] ( )

1

3

5

7

k

X m k P X m k P k P Z k Q k k

k

σ σ

 −^   =

x f (^) X x e

α (^) − α

The quantizer is like the one in figure 3.15 page 120.

Problem 2: [GAR]3.

Problem 1: [GAR]3.

d x d

d d x d

d d x d

d d x

Y d x d

d

d x d

d d x d

d x d

 ≤^ <

So Y is a discrete r.v. with

Y

d d d d d d d d S

Because of symmetry

[ ]

d d^ d^ x d P Y P Y e dx e P X d

− (^) α αα

−∞

{ } [^ ]

(^2 2 )

3

d (^) x d d

d

d d P Y P Y e dx e e P d X d

− (^) α ααα

{ } [^ ]

2 2

d (^) x d d

d

d d P Y P Y e dx e e P d X d

α ααα

 =^  =^  = −^ =^ =^ −^ =^ −^ ≤^ ≤ −

{ } [^ ]

x d d

d d P Y P Y e dx e P d X

α (^) αα

Y = aX + b is a linear transformation of X.

If X is Gaussian then Y is Gaussian too with

E Y [ (^) ] = aE X [ (^) ]+ b = am + b = m

[ ] [ ]

2 2 2 2 Var Y = a Var X = a α = αa

α

α

Problem 3: [GAR]3.

a)

PMF:

S X = [ 0, ∞ ⇒) SY ={0,1,2,3,... }

[ ] ( ) [ ]

( )

(^1 ) 1 1

k (^) x k k k P Y k PY k P k X k (^) k e dx e e e e

λ λ λ λ λ λ

  • (^) − − + − − −

CDF:

( )

1

0 0 0 geometric progression

k k k k i i Y Y i i i

k e F k P k e e e e e e

λ λ λ λ λ λ λ

− + − − − − − − = = =

( 1 ) 1 1

k k e

λ + = + ^ −   

pdf of Y : ( ) ( ) ( )

0

k Y k

f x e e x k

λ λ δ

∞ − −

=

0

k Y k

F x e e u x k

λ λ

∞ − −

=

b) Clearly 0 ≤ ε < 1 ε = X −  X 

[ ]

0 means & 1 0 1

k

X k k X k X k

P ε δ P X X δ P X X δ X k P X k

=

 = ≤ < + ⇒ ≤ − <

by the theorem on total probability

[ ] ( )

0 from the pmf of in part a

k

k Y

P X k X k e e

λ λ δ

∞ − −

=

( ) [ ] ( ) ( )

( 1 )

0 0 0

k k k^ x k k k k k k k

e P k X k e e e e dx e e e e

λ λ λ λ δ^ λ λ λ λ λ δ λ

∞ ∞ (^) + ∞ − − − − − − − − − +

= = =

= − ≤ < + = − = − ^ − 

∑ ∑ (^) ∫ ∑  

( ) ( ) ( ) ( )( )

2 2 2 0 0

k k

k k

e e e e e e e e e

λδ λ λ λδ λ λ λδ λ λ

∞ ∞ − − − − − − − − − = =

  −^ +

∑ ∑

a)

P Y [ ≤ y ] (^) = FY (^) ( y )

− 2 < X ≤ 1 ⇒ 0 ≤ X < 2 ⇒

SY = [ 0,2)

P Y [ ≥ 2 ] = P  X ≥ 2 = P X [ > 2 ] + P X [ < − 2 ] = 0 ⇒ P Y [ < 2 ] = 1

P Y [ ≤ (^0) ] = 0

If [ ] [ ]

y

y

y y P Y y P X y P y X y dx

  ∫

If [ ] [ ] ( )

y 3 3

y P Y y P X y P y X dx y

≤ ≤ ⇒ ≤ =  ≤  = − ≤ ≤ = (^) ∫ = +

( Note that X ∈ −( 2,1 (^) ])

Y Y

y (^) y

y y (^) y F y f y y y (^) y

y

 ≤^ <^ ≤^ <

y^2

b)

Here for X < 0 ⇒ f X ( X )= 0 So Y = X = X

Problem 7:

P ( error ) = P ( error X = 0 ) P ( X = 0 ) + P ( error X = 1 ) P ( X = 1 )

= P ( error X = 0 ) p + P ( error X = 1 ) ( 1 − p )

P ( error X = 0 ) = P ( Y>1 2 X = 0 ) = P ( 0 + Z > 1 2) = P Z ( >1 2)

3 3 3 2 1 2 1 2

z z e dz e e

∞ ∞ (^) − − − = (^) ∫ = − =

P ( error X = 1 ) = P ( Y < 1 2 X = 1 ) = P ( 1 + Z < 1 2 ) = P Z ( < −1 2)

z e dz e

− (^) −

−∞

= (^) ∫ = (Note that here z < 0 ⇒ z = − z )

( ) ( ( ))

3 2 (^1) 3 2 error 1 2 2

e P e p p

− − ⇒ = + − =

Please see the attached file.

1 Z F X U

[ ] ( ) ( )

( )

1 0

F X x P Z x P FX U x P U FX x dt FX x

− ≤ = ^ ≤ ^ =  ≤ = =     ∫

So: P Z [ ≤ x ] (^) = FZ (^) ( x (^) ) = FX (^) ( x )

Which means Z has the same CDF as X

Problem 9:

Problem 10: