Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Low and High-T Limits for qrot and qvib, Lecture notes of Chemistry

Vibrational Molecular Partition Function and High Temp Limit of qvib.

Typology: Lecture notes

2020/2021

Uploaded on 05/24/2021

arien
arien 🇺🇸

4.8

(24)

310 documents

1 / 5

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
5.62 Lecture #14: Low and High-T Limits for qrot and
qvib
Reading: Hill, pp. 153-159, Maczek pp. 51-53
TEMPERATURE DEPENDENCE OF Erot AND
CV
rot
Low T limit of Erot:
T
)
= 0lim E
rot
= lim
(
6Nkθ
r
e
2θ
r
T0 T0
e
2θ
r
lim C
V
rot
= lim
12Nkθ
r
2
T
= 0
T0 T0
T
2
Low T Limit
High T Limit
rot 2
rot
C
V
12θ
r
e
2θ
r
T
C
v
1
nR T
2
nR
E
rot
6θ
r
e
2θ
r
T
E
rot
T
nR
nR
Note maximum in
if we retain the two-term formula for the low-T
1.0
C
V
rot
nR
E
rot
nR
1.0
T/θ
rot
limit. Actual maximum, derived from the full
qV
rot
, is CV/nR = 1.098 at T/θrot = 0.8. [Rapid
pf3
pf4
pf5

Partial preview of the text

Download Low and High-T Limits for qrot and qvib and more Lecture notes Chemistry in PDF only on Docsity!

5.62 Lecture #14: Low and High-T Limits for q

rot

and

q

vib

Reading: Hill, pp. 153-159, Maczek pp. 51-

TEMPERATURE DEPENDENCE OF Erot AND CV

rot

Low T limit of Erot:

T lim Erot = lim (^) (6Nkθr e ) = 0

− 2 θr T→ 0 T→ 0

e

− 2 θr lim CV

rot = lim ⎜

⎛12Nkθ r

2 T

T→ 0 T→ 0 ⎝ T^2 ⎠

Low T Limit High T Limit

rot 2 rot CV 12 θ r e

− 2 θ r T Cv ≅ 1 nR

T

2 nR

Erot ≅ 6 θr e

− 2 θr T Erot ≅ T nR nR

Note maximum in

C

R

v ≅ 1.624 at

T

= 1.0 if we retain the two-term formula for the low-T θrot

CV

rot nR

Erot nR

T/θrot

limit. Actual maximum, derived from the full qV

rot , is CV/nR = 1.098 at T/θrot = 0.8. [Rapid

change in CV is a signal of a gap in the level spacing measured in units of kT. What gap would

be relevant here? At what value of T/θrot would you expect the most rapid change in CV?]

QUANTUM BEHAVIOR

VIBRATIONAL MOLECULAR PARTITION FUNCTION qvib

U ( R ) = ( k / 2 )( R − Re)

2

Using harmonic approximation:

ε (^ v) = v + hν = v + hcωe 2 2

zero point energy — when v = 0 ε(v = 0 ) =

hν 2

So q

vib =^

∑ exp^ ⎣^ − ε( ( )^ v^ − ε^ (v^ =^0 ))^ kT

v= 0 ∞ ∞

q

vib =^ ∑^ e

−vθvib T

= ∑ x

v

1 −

x v= 0 v= 0

q

vib

1 − e

−θvib T (^) all values of θvib/T

Put this result aside. We will see how it is useful later in redefining our zeros of energy.

q

vib effectively shifts the zero of Evib^ to the energy of the v = 0 level.

High Temp Limit of (^) q

vib θvib^ ^ T or^ εvib^ ^ kT

1 − e

−θvib T

qvib =

T ~ + 1 −

θvib

θvib

2

If θvib  T, then e

−θvib

T 2T

2

So q

vib =^ 1 − e

−θvib ⎡ ⎣

2 2 T

T

1 − 1 − θvib T + θvib

θ

T

vib hc

kT

ωe

qvib  = high temperature limit

When is high temperature limit form useful? For molecules, not often …

EXACT EXACT

MOLECULE (^) θvib[K] q(T=300K) (^) (300/θvib) q(3000K) (^) (3000/θvib)

H 2 6328 0.0474 1.138 0.

HCl (^4302) 1 + 6 × 10

  • 0.0697 1.313 0.

CO 3124 1 + 3 × 10

  • 0.0961 1.546 0.

Br 2 465 1.269 0.645 6.964 6.

I 2 309 1.556 1.

1 + 7 × 10

Cs 2 60.4 5.481 4.926 50.14 49.

1% error

Only for very heavy molecules at very high T is the high temperature limit form for q

vib

useful.

VIBRATIONAL CONTRIBUTIONS TO THERMODYNAMIC FUNCTIONS

2 T

= e

−θvib qVIB =

e

−θvib

1 − e

−θvib T

2 T q

vib

N = e

−Nθvib 2 T *N QVIB = qvib qvib

ln QVIB = −Nθvib / 2T + N ln q

vib

Evib = kT

2 ⎜

⎛∂ln Q vib

⎟ =^ kT

2 ⎡∂ (− Nθ v / 2T)^

N∂ln q

vib

⎝ ∂T ⎠N,V ⎣

∂T ∂T ⎦

T

NkT (

2 θvib

  • NkT

2

∂ln 1 − e

−θv ⎥ 2T

2 ⎣ (^) ∂T ⎦

∂( 1 − e

−θv

Nk 1 − e

−θv T = ⎢^ ⎥ 2

θvib + NkT

2

⎣ ∂T

T

− 1

T

T ) θvib e

−θv Evib =

Nk θvib + NkT

1 − e

−θv T

2 2 T

2

( 1 − e

−θv

e

θv T − 1

Nkθvib (E − E 0 =

Nkθvibe

−θ

T

v T ) = vib 1 − e

−θv

zero point energy (energy of v = 0 above minimum of potential curve)

E 0 =

Nk

Nhcωe reference all energies with respect to

2

θvib 2 zero point energy

NkTx Define x ≡ θvib/T (^) (E − E 0 ) vib

e

x − 1

Einstein Function (E^ −^ E^0 x

RT

) vib = e

x − 1

plotted vs. x in handout