Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Machine Learning Assignment – M.Tech | PCA, K-Means, Logistic Regression (SOLVED), Assignments of Machine Learning

This is a fully solved Machine Learning assignment for M.Tech Computer Science, ideal for students from Amity, BITS, or other work-integrated programs. The assignment covers core machine learning concepts with clear explanations, step-by-step calculations, and practical application of algorithms. Eigenvalues & Eigenvectors in PCA Application in dimensionality reduction Interpretation and mathematical calculation Evaluation Metrics for Predictive Models Precision, Recall, Accuracy Campaign case study analysis with detailed breakdown K-Means Clustering Manual clustering of 2D data points Cluster assignment using initial centers Principal Component Analysis (PCA) Finding the first principal component Eigenvector interpretation for a 2D dataset Logistic Regression Probability calculation using given β₀ and β₁ Real-world use case: Exam performance prediction

Typology: Assignments

2024/2025

Available from 06/28/2025

rishav-raj-singh-1
rishav-raj-singh-1 🇮🇳

3 documents

1 / 11

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
pf3
pf4
pf5
pf8
pf9
pfa

Partial preview of the text

Download Machine Learning Assignment – M.Tech | PCA, K-Means, Logistic Regression (SOLVED) and more Assignments Machine Learning in PDF only on Docsity!

fNpped Machine Lenanieg 96 23SL001F oO. © ae [ ® ‘| a) healoke Egeovnlves : voles, we cove “He chanackentshe equation: To Rot tre age dok (Arar) sD. Ves leade ~to: Ps al r) “l aed 4 =o 0 \ \-> Cepanding ste, dakeamerant + Carll 9) (lea) -\|- ie lesan “0 +0 20 (\- (>) (evy-i] e OY LOSO-a] oe (i=) [eon “\- Cra) ve (1-9) [oe ery 17) co ayer) (tea) -2| =o (1-a) (2° ~atNHZ) PO, (tea) (A =2a7) 7° C1-aA) (8-34) 2° reBan-waBw =o +H Bd ee » (-xrah a3) =O — TaHA-3 FO SreUne B72 Co aR LS) ye 3 they A143 eo . “Gigen valves ane | rAyee mr =) d3 23 reo sO b) olen petetion Ww RCAr coertet 7 Exggovedins neprescak Ave \eriante cophsved by eoch proupel ceanpecent: . igre etgpn valves Weans Move voxant explored boy ste. grouped Comporent: Rajoksons behest Coyenveluce ond Mahiveds & Sam ck Eigeavalves = Tran. & A Tac (A) = tarel = 4 sum & Bqen yober o OFITB=Y 2 Produk ob Eyenvelver = Detrotrank at A dok (A) = O Grodock ekGe walwes Se xiKny lo $0, BEC@Y ao , whds Bsc wears erabix A ES StAgulan (nonQoventtble! Q Toke hracked Mewwers 2 Joo Model predicted bayers 2 %50 Boe Bsckves CTP) F200 Cwodek predicted bo yers % they porchoses) Face. Postkves CFP) = (50 (mode) preaided buyers but ty eda’ perebese) rnodeh predicked non, ~ buyers & [00 —BS0 «650 “Fre Nejotves (TN) © See Crrocdeh predicted Men cLwen and they d2dnts pevakose | Fadse. Negatives CAN) 2150 Crodel predtebed noncboyer 1 bak atrey cxchualty porcboted dekvol Prtwol hon Royen Royer Tote Pore drcked Boyer TP 2200 FPs\so R50 Peewee Be EN= {$0 TN os cH (4) 43 43 Be 24 cy (2 a 2.03 242 2:55 19 C) 1 —— : su] 180 $F Ek6 a (4 ne) —— ieeE) (9) GekP Gye C9) _ y \ 4 <2 06833 G25 06938 2+ OSES Om 3 “Vs ~ 833 228 3-350 2 Was 3 6 -oS wi6a Ons 4 3618 ~ or S8BS 4 y os 6.833 0-25 Or69°3SB - OTH16S 6 i) Vs 2169 22s by 6188 83-2508 6 5 a5 olga 62s 010298 Oulas geen ZY xbeR LOW” s (xk) OY) = = Ine oe bys Ss eens Ve 4833 = lersse = 3 x) (xe) 13S Cov (x) > 2) Ce e SF 3S nel Grl cov (24) * g(x FD) og FE ete 6-\ n- 10°33) 2 alee cw Hd) = £¢7-DO-D) n-\ aS ts | Ce Vis ates & velwes FC \e- AT\=0 BS is =) Ss a\eer> | 72 dy (anee-a) -~ (sco (es 266a te — 22F = 0 q°58\ - BSP New 5.666 A+ 5:33) FO dye HABE hoe ENDY 4 oan volvey Exon weckors of C2 [BS bs ue wet ®\ = 44436 Vs DNbG cv, 2AM BS WS my oy . as hy hs Deb 4 at [ | Qs mts) = tees on —O) psy a 1664, = e4AHY, ——O rom © PSY, = bua BSR Esy,e OFF —) fom @) DA GEY EAT TY pss, e ahaay - 2l6ey, 5% = 23084, —@) Rom equ @) teks ogsume LF ota ws s[Rbowe foun) ' O-6h4 (ya Coeaaye ate Mie | feet 0'6uF ech Vt 202 , NTs CES) bby tlqay Nie Or R388 OSU UY us = 0644 Now Ser vallucs oo, XM, 2 eH 93¢ Ao” Rtas O-P 383 Bg weecows = “| oan | -SUS\ va [O54 -O'8383 4 (08.388) 4 Co. Sergey ) 0-8 BRR 2 (0-938) 4 3 Co-Strteey) Stan) 4 ¢ [rn a id (0 s444) 4 (oBse)+ , (> Sue) S(OP396) 4 9 (ost b(C-e3eg), 5 (0-suugy any KR 3-016 3-310 S492 $. $32 3: O04 3.95h y L é a urivesity conducted ca Shody fo understond We ~oodion shop bebween We. number of prockte desks comnpleked ork “te. probability a poses} Ye ooh exon . & toqikks meyestinn prodea wos Aatted, and Ne pone melons chkoined were Bors and Bi = og, Catolodcd fhe probaitthy frok a shodenh ME paws fle fecal enor R whey complete : aS 9 pretite. eds b) e Precktce tests { tt @ CBF EOD legpictee Reqrestion Modal P (Poss 2 where : Bor -5 Cintercapt \, Biz OF Ceceppretent for the timber di. prochice, tests) cise pamber of pyrockfee cfeske Corapreted. a) Probabitthy of poetry 2 prackten Ksb ore completed CX-3) Bete 2 eSH@ERB) aS BY on26 ' pts) >t et \+ eo Irene (#13646 3h + & e-oer fo .463'% an b) Prrabyabitthy f- pasirg €e prache cess one ene Completed Cue8) Bot Bix se -S+oR(s) > HStGu Thy e ~——. a pt = Li x O-gor pe Poss) eer 2 inert 14 O26 246 ors Fors. o