Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Machine learning notes, Study notes of Software Development

Machine learning notes hadwritten

Typology: Study notes

2024/2025

Available from 04/18/2025

sarofan
sarofan 🇮🇳

17 documents

1 / 113

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17
pf18
pf19
pf1a
pf1b
pf1c
pf1d
pf1e
pf1f
pf20
pf21
pf22
pf23
pf24
pf25
pf26
pf27
pf28
pf29
pf2a
pf2b
pf2c
pf2d
pf2e
pf2f
pf30
pf31
pf32
pf33
pf34
pf35
pf36
pf37
pf38
pf39
pf3a
pf3b
pf3c
pf3d
pf3e
pf3f
pf40
pf41
pf42
pf43
pf44
pf45
pf46
pf47
pf48
pf49
pf4a
pf4b
pf4c
pf4d
pf4e
pf4f
pf50
pf51
pf52
pf53
pf54
pf55
pf56
pf57
pf58
pf59
pf5a
pf5b
pf5c
pf5d
pf5e
pf5f
pf60
pf61
pf62
pf63
pf64

Partial preview of the text

Download Machine learning notes and more Study notes Software Development in PDF only on Docsity!

Date: / | \ Machine learning C Pave J N T. T Cmo n) Uniupevsed mL. | clouthe chon Cluska 19g a pam Recomndaly: (ogirh'c ° kemeang pees | ( KNN ° DGScan Conkerd Memory ea, OT < hverorcht j 9 me ‘cron eb SS Una bye Vier ews RE based bare) NGe Diowcabenell Rediveh as GBM j T 1 SVM PA tone [A Svd Hut PAIN. Exod ing =i calboost, adabeos | z upemied ML —> wort stot witty Reqraiton —y lincoy # f Lincor Regraion | ‘ Mut hale ps ly nomial grasion incon Regression Regression (MLR) il Iineor Regrusi'on (64R) ¢= whe for wall au 2p ete only One fot 1 then if al packeqe ZLPA RES Mecca. Raster of linter Regression Cquahion of chargh line Yemute And value of on and ¢ el Ps Co, 4) —> xv, Ms ala Paar) Nome. Mn ; i n i : : | = f a 3 4 OS Me slope = Vay = 6-4 Mo—X, QineQ mn. 2 i ef eo ® ilo me pecans with every chiang 10 Value of Beinn eh eli'}fece lay laterceph ae Py (a2) —» (yy, 2) Aes rnc C geo(ay te Se gar Ce=26 Wien erce ee at esnboyar tine eq” iy acy pete tcloke X ord + =r 7 m for_gieen valuc of X We Can ind tosreayd0nd jhe Value of a whak if we have dio or proce then wo indeped cat Variable q =| then th ir called muti pl « linecy Legrewsi'an PES, eae, 7 aren At Fs wil, nea bh £04 7 plod ual TELL ERA (3p) bit 7 al ex shh » Now find he loce:funchon fous :[lo-8 ecru) EUR) Af ae at C2b—20)* a > 4Adtqtlster+36 - AO cle 4 es a re teoson qo toke squers: Jothol pos ikve and negohve._] ‘ Veluc_ moy nek cancel each othy de vw lon Gone —~ High Accuracy — high [ou value ——~ low: Accuracy [We can feoprewe the model by Jom pphmizehion technique | called QA * gred éenl ae wher Pepecit the prote Herokvaly Baki Wwe gel bal poromile Cm, ¢) for | | Hi: an will give Paint ioue tunehion. eel a || 1 ‘als bal minimum ie grodive} devecol” arenes eum | yuck thal [nner funch'en 9 The Patch | = PA hich anweld C cor predict / a. ; ar ee C baeeinst fa ace (3 {tho will Step down onkil War 6 te } . Bah i" j “global Minimum by eave q L. x ] Seay Sa / ey Je : | = ie poremel ¢ ‘i Rondom Globa) oe! a jnth'a) Mini mum value Cmx(a) ; ps! a In mo chine learning an [rte [re \ LD wenia.r, bap ole ac. Lert L Dc 1S Bed) Bhan slope > nite es ye | Og Picccent ee ce - learning rate mb mognetud of chonge thot you a wart in porom cer during tprohioa 4 + parked dlerevokve of Jou funchionw:r- + m is denvohve of fous functhion Wr: | (Cues teh e) mn s aa, | now tt aes SST a Serres oy . Kn bso a ll ae Da hos: funthon) . 2 ope, 7) ee Xe . Beare } eek —— re PL ay Bee tS Cy, — , NI 9 ae | Page — Umpuons o BOOMER §1c1100 } ‘a4 five main assumphion (p Blinc or — brhorsh pnput_and oul put. Jo. teulkicolincarity i == -" onal iby af Dori diva } = ashtes by . 's to cotrelahon of €rroy = Bereihotl di... | cna relakon . Pemenbk tad Eee Feadure ane dorget (output) fee lalea poukve OL negakve Gocclenon lincav Rerw Noon (aear(x)_ lonplreoabl, +y multiple dae publ con ta _tael ie Netels to check thy - ne plot (Leoture Aiclogd) feoturc Ne tog cb). : sphinn ok. m Mutbicolhincort ly .: ik reanlotvere Fecture should hb, independent or should nok urrclohon amang By nit lied whol the pablur° iat Linco Regression Model for 30 we dea om good . eS nee as alii i lon to check miibtcalliaepertky oe | =~ | 1) | vit (Voniance InAloh'on Facto) Sic | il at ic around | then feoturt dont hove the iusue cond i} a} v1 ¢ or more than thot Hue that | perbicul ar feqturt hove pout ‘coll incorhy fas ue and need fp remove it a} | anuther method te h find out corrcohon behaecn al) th: : fe otura C Heolmap ) fgsutm ph'on 3l- Normality af Rend ual il oe Hhok fondo dnchee Clam teldsgatelict nell] nlof or goph lawl 2S salvar lived! Domo I | dithibuhan— means Mmarsimum ervor theutd Ground mtan =0 | how to chee ye: kernel deasihy ediqrabon( kele ) or Q-Q plot ce ma | =€ ras \ § ca | Pe ind v6 : | [ Me cs oo 8 / \ cM ean = a a é 3 | kde Q- @ plok ) | (Therohcal Quanh'k ) 41 Assumphion Al: Homascedastivity * wi —__——_ Some ScaHered Lipee ef u Jpreod of _testdual shoud he equelly | or voitor! ly Jealterecs if A feral Wee Calle of eee chuly whics ty nob desirable . q | Date: / / | te | an Non - linear Equation = Poly norniaf Reg re ssio, ws tnow 1 Qouckon of llireantp = mx+C | and Pawahion of, Stoople (in eo'e Regretston | “y : fo + Aix land fics mul ee ftacar Lquakion ee fo + Ai % 1 + Bo % + fig %q te « WE Bp%n | I t ai Have Lr A clelitee kit Paralun rel evan Nala is ae ia wwhak if data 1: ‘Do Lane ? i iy | | | | | oe e ee such (cenan'o we exckack i | ee to. polyncons ol Ee rene Dees . i ee o} tonal Wome len ayn * e ; s Pri fro Ctsiing shaqe eee Z| eo Sle s } | fay we “ool ty Abele: poly noms al of d kt} one Cont Hn ir telekon bchween Vy candl coe lfu' en) iy JK [ine or me 43 2 ab 2Hlyrese. ae fi, 146 be ey = mex Sra nt 4 tyeest (29) ‘@ Anal a oe # = + b = -o-segs#, a Ts lincas tquabon ae J | Sawld| plug value. , ia : als math. lis pak iy ae AIX - 0-83. ll [x | tot ES for wu y Nack 4 mt ec 4i(H)-0-83 = 3-94 3-8 | y+ jt NCES a ee ppeani(g-o-e + {604 | 16. Sur : ele api-OLs (y,%) : depeder| Yoanabl, n_— Indepederl No abies Jempor} stahmade|- api aa $m #teoding dolo rom ¢sV odt = pa: neoee Gao ain. csv 1} tt dehining the Varrobles os Ab Le] dole O 2 Pe Ae doliclt) (ee) H_adding th wo pS Sc add constant (eo) # Performming reqvaasy fal Nn peel OND Cree OAS (yo bE it price} Jummory Be ee pant (_ruull- Juma th) ea eee a 1 4, i ——_——— oe te Date: / / Page Ls ee wee) ——_Y a aot <~— Nowe odd perally 4 x as befovy sO uonnrenalye redutrac th ich wo) add he) this term Ay ty id fox Hh fini term Bea Fel Corer _{ lies huynce spotorncdey | : Reiduaf —* Pm > slope. | Now we will coleutats [ocr for both |itne for * =) | with eqe © i mmee [inc 1b posing (2-3- o-q-les)> + FESS both Roane: ($-4- a-F-1-QE 4+ (0-4) . perfecHy Hoo! 's why Lt dem i De werk = (OP fine & 0-4) > \) 2-03 JL ot! (r-n~ = Bist j Lee we ge thing s1'g.0i hicon} ie ee Was lout for the nud Itne As our mod! tan see thy change ik will releck and is ro del althoug ete dive ha d O(Curciu DK a. fyacs roe ie atgns rcumbl y reduce ane b las pocreasce “ My tare Called Le Ante | if we ep mote than one tonut ots penal hy - aaa od Dy ( mittm, 2) a An A (misimetme) Ver Wet Are eloing iquar (*) at} fe yim we Callid ae L192 Nom oy {ala regul avyach'gn “ | Lasso Rearession et Rea daal ena, J I dats it pins ie lp to reduce ouerfitting- In Qidae qa we have veen— 2 Ae my fee Net ae = Wea yp) fea Ne 2 Ss eee rtt (eto ee a” ew) A) tre frdaer ir eth —~ Losin te ful andthe r wanzhon af Rvelae nN en ew) SNe z xa oR ee ea eS +iw.ll In ridge regression for ny voluco} A thee vere a] Deu, 1om« Gale. hoy dee ek of in pup feature buf in lave 2 yuu conkreusly intra valve afl Aras testa'n 7 _paio| Gps will xen lun For som o} Cocttvenesd which ar al Lenpatlon| yo hea we unknowing doing . Aclechon amd it 3 odvenl oq Tee lao Whee you aie ere high oltmenitcm al cla Land dur feahune ore nol al we shoud pref | Lang aur Ridge ! Page } > ( Date: // é i € Z 4 : Fe. g Vo A Variance ~< | a fig a. i 24 cui = g ; 8 Teer. lies — i “il $=. —¢— 4 oder filly Ove hy Baca) eeViamancee HH val Vom'one rg(8 | Seedelitihg aig a sb: | es Te! aed | | ! | undesti Hing | | | EE Aah High bios (os [as C { | = a i Vortance Tradeott: Lil ty important to Bada dead pred( chon e1rore¢ Lins aad Variance) when tbc comes to accuraty |_Lin cone pk PA gen'fher J gllethhe i frodioft between model's» ability do minimize ie a Vorionce which j, rebbinest +p I heal _srluhon -fr Sdeckng c eral of tequl oxzekin | Conlon ts _ pre Pts voderstonding a} these error: woutd help | al ave id the ovclti ting and undepitting d e doleue ukile choining ol grithon. Jd yn ML sere on el Sioa Qeing hugh i ia ive large err ta bras'ning ou laut Cy A pi whey ae, We ads a retorm mend ral Thal i fting Lovie OA oder pHing. hop nen the hynatheais ic is Lionple ax _linem y T rg h Li aul ae 4 data pire inltaoe Wie tad Lpread >| ous sala af Colle d Wirenivaron lle Sneed ne mode} Lath high Uam'on ce Kas ‘oO neh tompl te ht Mangala ‘to ae act able fo fe ar the tel f | pe dl ieee al ry Li ae hrgh erry totes alo a {4 Hibs } y } ap qo ak D f dale. oul Us ‘& hing Th. beosinta hate 1p) Curve ord Lula h order hy pith exis heel apt luhton atthe evar Hee eels tha ae !