Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Machine Learning Notes, Study notes of Engineering

Notes for machine Learning which contains everything you need to know

Typology: Study notes

2022/2023

Uploaded on 07/03/2025

manasvi-joshi-1
manasvi-joshi-1 🇮🇳

1 document

1 / 113

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17
pf18
pf19
pf1a
pf1b
pf1c
pf1d
pf1e
pf1f
pf20
pf21
pf22
pf23
pf24
pf25
pf26
pf27
pf28
pf29
pf2a
pf2b
pf2c
pf2d
pf2e
pf2f
pf30
pf31
pf32
pf33
pf34
pf35
pf36
pf37
pf38
pf39
pf3a
pf3b
pf3c
pf3d
pf3e
pf3f
pf40
pf41
pf42
pf43
pf44
pf45
pf46
pf47
pf48
pf49
pf4a
pf4b
pf4c
pf4d
pf4e
pf4f
pf50
pf51
pf52
pf53
pf54
pf55
pf56
pf57
pf58
pf59
pf5a
pf5b
pf5c
pf5d
pf5e
pf5f
pf60
pf61
pf62
pf63
pf64

Partial preview of the text

Download Machine Learning Notes and more Study notes Engineering in PDF only on Docsity!

Date: / / a _Mochine learning C Pane / E I —— = Gece { q Me f Unsupervtied mL. : cleaiheshion chalitiag Oman — Recommdale. =A (ogi th’ > kemcanp | KNN ° DGScan (onkend Memory OT « hverorcht'c Le ea Nav bye Gc (lean RE bord bane NGO Nincabtonel Redu ae GBM j T l SVM PA tse [CA SD tute ANN Enel ing ahi calboost, Tee Supe ‘se ML —> Je woit| stot with Regrairon —y [incor rt ! Linsar Rearaion i Eel Muth'p le pe ly nemtal glesteo linc or Rearest'm Regrasion (mL R) Ca Reqrasi'on (tbe) = when for ule we hou. only favawa fcotue theo yl! caee | pockeqe 2LPA 3 LpA GLA, Raster of inter Regression : | Equa hon of clratgh ling Yomute find valuc of om and ¢ Po (2, 4) 2 2h VP Ty) eer eto £ Ns slope = Way = 6-4 Ur —X, Cee NE By Se A = 9 5 7 ! slope pecans wilh every change in Value of % how couch edt }}ece away) Jatecceph 26 Py (24 ¥2) —> (4, 9) A) Tasee Gale Qe A) te G Bo pr C= 6 Lnfecoce Mnclilveaabous line eq” ly funchon thot Kelolk: ¥% ord ar 7 = for_gisen value o| x we can find Cosrexd0nd jhe Value of- y what if tue aie two Or More thon two indeped cat variabl« y a at: dhea th ir calles multiple linea fegrey ian pa ied 7 GAR GENRES pre _ i Et PNG ala PaO eT ED rie 7 [ (3) J Now find the lore: funchon fous [0-8 eye) (eed Coens] a Mpdiiter hagas QO ele fe a (ein ole quer. porthot pos ikve and negokve, } S veluc moy nel Cancel each other ww low volte ——» High Accuracy a high [oi value ——» low Accuracy v We can non rave dhe mod! by Jom pphmizehion technique Called ca grecl cent hae where Jan ae : I thecokvely Rak Wwe Yall bul poromche cm, ¢) for Lwhith a will give minimum ow 4tunchon. MWlette doy “global minimum 16 gredive} descent” we Con use grocers Meee far linear J for oph me Soko Pct ty determining beet porometes ogaielc Ate i Ae The erclid ee set ored. ik Bes en Cy \ and eared, porame le ref 3 trode! Qty phimumM Op himr2 < q / \Date: 7 [| { iN {thir will chep down unk rebel?bwn fo Y a : pa é global minimum by ikeohve mY | (re cers . [ ' t i 7 hh SS : a __poromel ¢, Rordom — Gleba) \ a 4 ath‘a) Myay mum _Nalue Cm3(s) la Fe inn 1 ake pital Ing ‘ Hae. < [mm feyern) |= LOm We Us idvw Bie \c/-\e, + L De b= b- Ldb im- slope ret Ini Mog U) = uecakk ae ccent ote. bita4,. IL = learning oem | i mognrtud of chenge thof- you . . t wort in porom tte during iteroh’on ‘La Pi perkel derevokive of lou function w-r-+ m > pork cre Vob've of let Ain chiA. (a cx} ¢ A Sol.) i, x ae rN Meewiemanches) 2 / 1 = (y; vf )* =i Pe. am om Aa 1 Ss === gee? fle Oat WB ar urs 2G (Yin yi) | q re st Clos funthon). 9 / | <= Gant )") Ls C. a prc, Rin ites Sie AN, “ es ? ; ial ce , od: | oy Page ONS oO Fineaime aye.s/0n d are five Main astumphion Mbilincor re on between ‘input _and Ou put. 1 No roulkicolinearity i! y mali aft Renidual ! ee ohicr by. Giess ton A a BA cs Me dell (eawarl relahan Gelween ‘individual Feoduve cand dorget (output) could he poukye pr acgohve corel ob'on ey No \ -/s I ee ath 9 : re \ ay a Son ae lincay VU Nine ow Y Non-lineav(x J plicobl, +p multiple eae pale gen aa tel Vo | m0) this * Scaler plot \ (feoture ANctorg ct) | feoture Ne tog cb) : Ag Mutticollineant hy .: ik mean there ure jhowld hb, indenendent ox should nok ove any torrelohon among themrdues the rable © mulki linear Regression Model for 80 we deo va Ahin mo Or im geod] - (& Saab gs sueohet ) ges NI q ) bets dy check multtcal linecorly 1 h— i vif (Voniance InAlotion factor) eae ilat ie ground | thee feoturt donb hove th. on | i and i} ib ve ¢ or more than thot Hue that | perbcular feghure hove roth ‘coll incorhy fasue and need do remove it Gnuther method te bo find out correlohon Peete a al{ Ay 9 kde Q-@ plot AD} dh. 2 fe otures ( H a Date: / / = Page a i [indo Set Alien Sea. dl df Po Nee ZL Meare | fig & Re mul tas va we oe eee es Tipe We 4 r= a I —_—_ + | uoder file oveh Huy | SE) buVannnce Hah Vona‘a re Z (| siodeih thing | t | low) Way We, y VES : rr ge ene. | i | se E Ce : Ree i | undeeti tring — Paes