Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

MAT 1275: College Algebra and Trigonometry (Lectures 15), Assignments of Mathematics

MAT 1275: College Algebra and Trigonometry Lectures

Typology: Assignments

2020/2021

Uploaded on 01/19/2021

gottaluvscience123
gottaluvscience123 🇺🇸

4

(1)

1 document

1 / 29

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
Session 15 Trigonometric function
forrighttrianglesy
Consider the right
triangle
bP opposite
4
Adjacent
Given the above diagram
we define the trigonometric
functions of sine cosine
and tangent
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17
pf18
pf19
pf1a
pf1b
pf1c
pf1d

Partial preview of the text

Download MAT 1275: College Algebra and Trigonometry (Lectures 15) and more Assignments Mathematics in PDF only on Docsity!

Session 15 Trigonometric function

forrighttrianglesy

Consider the

right triangle bP opposite 4

Adjacent

Given the above

diagram we (^) define

the

trigonometric

functions of

sine (^) cosine

and

tangent

Sino Opposite

Hypotenuse

c

tan

a Opposite Adjacent

These

formulas can

be

memorized

with the acronym

SOH CAH TO A

Ex

ample Find^ sine cosine (^) and tangent o angles A (^) and B 5 4 13 sin (^) A

sinB (^) opP I hyp

hyp

5 Cos (^) A adj (^4)

costs

adj hyp

Typ t

an A

17

tan B

OPI adj

adj'T

B

Examp sD^ Find^ sine cosine and^ tangent of angles

A and B

FK GE 12

Sin A
opp

Typi

I sinB

I

13 B

cos A adj 5 cos Bil

hyp 13

tan A^

I

tan D I

adj (^5 ) D

we may

re wrinte tan 300_

f by rationalizing

the

denominator

tan3oo

BE Bz

Now we

consider

the 45

triangle til

sin 450

tr rt (^) II

Cos 450 I^ Fz

ra z

tan 45 u^

I

Tha t^

is

sin (^450) fz FE Ccs (^450)

tan 45 o^ I

we (^) know sin (^170 13) 15C D 13T^ sin 170 513

BT

tg.IN

onh4.

w e k^ n^ o^ w

an 170

ftp.ta

toT 42

y

ME

Examplem class C

LIB A

F in

d L (^) B (^) AT and (^) AIT g

ta t^ C^ B t^ L^ C^1800

900 LB^ t^730

D L^ B^

t 1630

D 1LB

we have

Sin 730

ATI

16

D AT

1Gsin

T15.

D BT

FT 16.

We

now find^ LB using rig an (^) B

A

y

D B tan

Next

we find Lei

using the fact that At LB^

1 E^ c^1800

900 117.^

1 L^ C^180

s Le^ 72. Thus 132

C (^) 72.60 (^) DM Examplecci

B 16

c

A

Find

AT LB and LC^

4 we first^ find^ AT using

the

Pythagorean

Theorem

AB AT (^) BIZ

cos B

ABI (^) I L

At 16

4

D B^ cos t

4

We may now (^) find

using the (^) fact that Atl Btcc 1860 D 900 (^755) TLC 1200 D 165.^ a Lc 120 D LC (^) 14. B (^16)

Thus 4

C A 15. Dk

Trigonometric Applications Jr

angle

of

ion

t g1e of

depression

an 200 b

200

D h Zoo

tan 200 I

D The^

height

of the

tree (^) is

72.79 ft

Exam

ple class (^) A giraffe's shadow is

8 meters

How tall^ is

the giraffe if (^) the angle

of

elevation to the^ sun^ is 280 s n 28 r I 8M 1

an 280 I