


Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
MATH 171 - Derivative Worksheet. Differentiate these for fun, or practice, whichever you need. The given answers are not simplified. 1. f(x)=4x5.
Typology: Study notes
1 / 4
This page cannot be seen from the preview
Don't miss anything!
MATH 171 - Derivative Worksheet
Differentiate these for fun, or practice, whichever you need. The given answers are not simplified.
5 − 5 x
4
x sin x 3. f (x) = (x
4
− 1
2 (x
3
7
4 x − 2 x
2
x
1 + x^2
x 2 − 1
x
2 )(x
1 (^2) ) 9. f (x) = ln(xe^7 x)
2 x
4
2 − 1
x 2
3 )
5
2 − x 12. f (x) = 2x −
x
4(3x − 1) 2
x 2
x^2 + 8 15. f (x) =
x √ 1 − (ln x) 2
(3x 2 − π) 4
(3x
2 − πx)
4
x
(x 2
3 x) 5
x )
π
[ arctan(2x)
] 10
2 x
1 2
6
5 (4x + 7)
3
x^2 + 3)
6
1 x
1 x^2
x − 1
3
x^2 −
x 3
√ 2 x + 5
7 x − 9
sin x
cos x
5 x 2 − 7 x
x 2
[ ln(5x 2
3
2
3
2 x · tan x
x ) 35. f (x) = tan(cos x) 36. f (x) = [(x
2 − 1)
5 − x]
3
(x − 1) 3
x(x + 3)^4
2
In problems 40 – 42, find
dy
dx
. Assume y is a differentiable function of x.
5 y
sin y
y^2 + 1
= 3x
If f and g are differentiable functions such that f (2) = 3 , f
′ (2) = −1 , f
′ (3) = 7 , g(2) = − 5
and g ′ (2) = 2 , find the numbers indicated in problems 43 – 48.
′ (2) 44. (f g)
′ (2) 45.
( f
g
)′
′ (2) 47. (f ◦ f )
′ (2) 48.
( f
f + g
)′
Answers: Absolutely not simplified ... you should simplify more.
′ (x) = 20x
4 − 20 x
3
′ (x) = e
x cos x + (sin x)e
x
′ (x) = −1(x
4
− 2 (4x
3
′ (x) = 3x
2 · 7(x
3
6 (3x
2 ) + (x
3
7 · 6 x
3 (− sin x) − 4 x 6. f ′ (x) =
(1 + x 2 )(1) − x(2x)
(1 + x^2 )^2
′ (x) = 1 + x
− 2 (Simplify f first.) 8. f
′ (x) = 3 ·
x
3 (^2) (Simplify f first.)
x
− 3 (Simplify f first.)
′ (x) = x
3 ·
(2 − x)
− 4 (^5) (−1) + (2 − x)
1 (^5) (3x^2 ) 12. f ′(x) = 2 + 2x
− 3 2
(x
2
x )
[ 4 · 2(3x − 1)(3)
] − 4(3x − 1)
2 (2x + 7
x ln 7)
(x^2 + 7x)^2
(x
2
− 1 (^2) (2x)
( 1 − (ln x)
2
) 1 2 (1) − x ·
1 2
( 1 − (ln x)
2
) − 1 2
( − 2(ln x) ·
1 x
)
1 − (ln x)^2
2 − π)
− 5 (6x)
[ 4(3x
2 − πx)
3 (6x − π)
]
(x 2
3 x) 5 (1) − x
[ 5(x 2
3 x) 4
( 2 x +
1 2 (3x)
− 1 (^2) · 3
)]
(x^2 +
3 x)^10
x )
(π−1)
[ xe
x
x
]
[ arctan(2x)
] 9 ·
1 + (2x)^2
(e 2 x
− 1 (^2) (e^2 x^ · 2 + 0) 22. f ′(x) = (x^6 + 1)^5
[ 3(4x + 7) 2 (4)
]
[ 5(x 6
4 (6x 5 )
]
x 2
5
( 7 +
(x
2
− 1 (^2) · 2 x
)
(x − 1)(−x
− 2 − 2 x
− 3 ) − (x
− 1
− 2 )(1)
(x − 1)^2
′ (x) =
x
− 1 (^3) +
x
− 5 (^2) 26. f ′(x) =
( 2 x + 5
7 x − 9
) −^1 2
[ (7x − 9)(2) − (2x + 5)(7)
(7x − 9) 2
]
2 x 28. f ′ (x) =
[ e
x (x
2
] (3x
2 ) + (x
3
[ e
x (2x) + (x
2
x
]
′ (x) =
(x
2
2 − 7 x)(2x)
(x 2
2
′ (x) = 3
[ ln(5x
2
] 2 ·
5 x 2
(10x + 0)
(5x 2
3
[ 3(5x
2
2 (10x + 0)
]
2 (6x) · 6
2 x(sec
2 x) + tan x
[ 2 · sec x(sec x tan x)
]
√ 1 − (2x)^2
x ln 2
( sec
2 (cos x)
) (− sin x) 36. f ′ (x) = 3
[ (x
2 − 1)
5 − x
] 2 ( 5(x
2 − 1)
4 · 2 x − 1
)
′ (x) = sec x
( cos(3x) · 3
)
( sec x tan x
)
x(x + 3) 4
[ 3(x − 1) 2 (1)
] − (x − 1) 3
[ x · 4(x + 3) 3 (1) + (x + 3) 4 (1)
]
x^2 (x + 3)^8
(3x^2 + 4x) · ln 5
· (6x + 4) 40.
dy
dx
e 5 y
3 − 5 xe^5 y
dy
dx
− 3 x
2 − y
x + 2y
dy
dx
3(y
2
2
(y 2
Chain Rule Worksheet
Find the derivative of each function.
2 3 f ( ) x = (2 x − 5 ) x 2.
3 f ( ) x = 5 x − 2 x
2 y = −2 cos( x +2)
2 2 g x ( ) = sin (3 x ) 6.
3 2 h x ( ) = sec ( x −5)
3 2 5 ( ) 3
x f x x e
− = 8.
2 23 ( ) 5
x x g x x e
= −
2 2 y = 3 x 4 x − 5 x + 1 10.
h t = t t − t
3 3 2
y x x
4 3
g t t t
g m ( ) = sin(cos( m )) 14. f ( ) x =cos(tan x )
3 2 4 h x ( ) = x + 2( x − 1) 16.
2 2 3 h m ( ) = m + 1( m +1)
2 3 2
t f t t
3 4 3
t f t t
7 4 5 h x ( ) = (2 x + 5) (3 x − 8) 20.
2 3 g n ( ) = (3 x − 2)(4 x +1)
2 3 f t ( ) = csc ( t ) 22.
4 2 f t ( ) =cot (2 t )
23 2 ( )
x x h x e
− = 24.
4 23 ( )
x x f x e
3 2
x h x x
3
4 2
s f s s s
sin^3 ( ) 5
x f x = 28.
4 ( ) 2
ex f x =