Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

MATH 171, Study notes of Calculus

MATH 171 - Derivative Worksheet. Differentiate these for fun, or practice, whichever you need. The given answers are not simplified. 1. f(x)=4x5.

Typology: Study notes

2021/2022

Uploaded on 08/05/2022

hal_s95
hal_s95 🇵🇭

4.4

(652)

10K documents

1 / 4

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
MATH 171 - Derivative Worksheet
Differentiate these for fun, or practice, whichever you need. The given answers are not simplified.
1. f(x) = 4x55x42. f(x) = exsin x3. f(x)=(x4+ 3x)1
4. f(x) = 3x2(x3+ 1)75. f(x) = cos4x2x26. f(x) = x
1 + x2
7. f(x) = x21
x8. f(x) = (3x2)(x1
2) 9. f(x) = ln(xe7x)
10. f(x) = 2x4+ 3x21
x211. f(x) = (x3)5
2x12. f(x)=2x4
x
13. f(x) = 4(3x1)2
x2+ 7x14. f(x) = x2+ 8 15. f(x) = x
q1(ln x)2
16. f(x) = 6
(3x2π)417. f(x) = (3x2πx)4
618. f(x) = x
(x2+3x)5
19. f(x) = (xex)π20. f(x) = harctan(2x)i10 21. f(x) = (e2x+e)1
2
22. f(x) = (x6+ 1)5(4x+ 7)323. f(x) = (7x+x2+ 3)624. f(x) =
1
x+1
x2
x1
25. f(x) = 3
x21
x326. f(x) = s2x+ 5
7x927. f(x) = sin x
cos x
28. f(x) = ex(x2+ 3)(x3+ 4) 29. f(x) = 5x27x
x2+ 2 30. f(x) = hln(5x2+ 9)]3
31. f(x) = ln(5x2+ 9)332. f(x) = cot(6x) 33. f(x) = sec2x·tan x
34. f(x) = arcsin(2x) 35. f(x) = tan(cos x) 36. f(x) = [(x21)5x]3
37. f(x) = sec x·sin(3x) 38. f(x) = (x1)3
x(x+ 3)439. f(x) = log5(3x2+ 4x)
In problems 40 42, find dy
dx. Assume yis a differentiable function of x.
40. 3y=xe5y41. xy +y2+x3= 7 42. sin y
y2+ 1 = 3x
If fand gare differentiable functions such that f(2) = 3 , f(2) = 1 , f(3) = 7 , g(2) = 5
and g(2) = 2 , find the numbers indicated in problems 43 48.
43. (gf)(2) 44. (fg)(2) 45. f
g!
(2)
46. (5f+ 3g)(2) 47. (ff)(2) 48. f
f+g!
(2)
400
pf3
pf4

Partial preview of the text

Download MATH 171 and more Study notes Calculus in PDF only on Docsity!

MATH 171 - Derivative Worksheet

Differentiate these for fun, or practice, whichever you need. The given answers are not simplified.

  1. f (x) = 4x

5 − 5 x

4

  1. f (x) = e

x sin x 3. f (x) = (x

4

  • 3x)

− 1

  1. f (x) = 3x

2 (x

3

7

  1. f (x) = cos

4 x − 2 x

2

  1. f (x) =

x

1 + x^2

  1. f (x) =

x 2 − 1

x

  1. f (x) = (3x

2 )(x

1 (^2) ) 9. f (x) = ln(xe^7 x)

  1. f (x) =

2 x

4

  • 3x

2 − 1

x 2

  1. f (x) = (x

3 )

5

2 − x 12. f (x) = 2x −

x

  1. f (x) =

4(3x − 1) 2

x 2

  • 7 x
  1. f (x) =

x^2 + 8 15. f (x) =

x √ 1 − (ln x) 2

  1. f (x) =

(3x 2 − π) 4

  1. f (x) =

(3x

2 − πx)

4

  1. f (x) =

x

(x 2

3 x) 5

  1. f (x) = (xe

x )

π

  1. f (x) =

[ arctan(2x)

] 10

  1. f (x) = (e

2 x

  • e)

1 2

  1. f (x) = (x

6

5 (4x + 7)

3

  1. f (x) = (7x +

x^2 + 3)

6

  1. f (x) =

1 x

1 x^2

x − 1

  1. f (x) =

3

x^2 −

x 3

  1. f (x) =

√ 2 x + 5

7 x − 9

  1. f (x) =

sin x

cos x

  1. f (x) = e x (x 2 + 3)(x 3 + 4) 29. f (x) =

5 x 2 − 7 x

x 2

  • 2
  1. f (x) =

[ ln(5x 2

  • 9)]

3

  1. f (x) = ln(5x

2

3

  1. f (x) = cot(6x) 33. f (x) = sec

2 x · tan x

  1. f (x) = arcsin(

x ) 35. f (x) = tan(cos x) 36. f (x) = [(x

2 − 1)

5 − x]

3

  1. f (x) = sec x · sin(3x) 38. f (x) =

(x − 1) 3

x(x + 3)^4

  1. f (x) = log 5 (3x

2

  • 4x)

In problems 40 – 42, find

dy

dx

. Assume y is a differentiable function of x.

  1. 3y = xe

5 y

  1. xy + y 2
    • x 3 = 7 42.

sin y

y^2 + 1

= 3x

If f and g are differentiable functions such that f (2) = 3 , f

′ (2) = −1 , f

′ (3) = 7 , g(2) = − 5

and g ′ (2) = 2 , find the numbers indicated in problems 43 – 48.

  1. (g − f )

′ (2) 44. (f g)

′ (2) 45.

( f

g

)′

  1. (5f + 3g)

′ (2) 47. (f ◦ f )

′ (2) 48.

( f

f + g

)′

Answers: Absolutely not simplified ... you should simplify more.

  1. f

′ (x) = 20x

4 − 20 x

3

  1. f

′ (x) = e

x cos x + (sin x)e

x

  1. f

′ (x) = −1(x

4

  • 3x)

− 2 (4x

3

      1. f

′ (x) = 3x

2 · 7(x

3

6 (3x

2 ) + (x

3

7 · 6 x

  1. f ′ (x) = 4(cos x)

3 (− sin x) − 4 x 6. f ′ (x) =

(1 + x 2 )(1) − x(2x)

(1 + x^2 )^2

  1. f

′ (x) = 1 + x

− 2 (Simplify f first.) 8. f

′ (x) = 3 ·

x

3 (^2) (Simplify f first.)

  1. f ′ (x) =

x

  • 7 (Simplify f first.) 10. f ′ (x) = 4x + 0 + 2x

− 3 (Simplify f first.)

  1. f

′ (x) = x

3 ·

(2 − x)

− 4 (^5) (−1) + (2 − x)

1 (^5) (3x^2 ) 12. f ′(x) = 2 + 2x

− 3 2

  1. f ′ (x) =

(x

2

  • 7

x )

[ 4 · 2(3x − 1)(3)

] − 4(3x − 1)

2 (2x + 7

x ln 7)

(x^2 + 7x)^2

  1. f ′ (x) =

(x

2

− 1 (^2) (2x)

  1. f ′ (x) =

( 1 − (ln x)

2

) 1 2 (1) − x ·

1 2

( 1 − (ln x)

2

) − 1 2

( − 2(ln x) ·

1 x

)

1 − (ln x)^2

  1. f ′ (x) = −24(3x

2 − π)

− 5 (6x)

  1. f ′ (x) =

[ 4(3x

2 − πx)

3 (6x − π)

]

  1. f ′ (x) =

(x 2

3 x) 5 (1) − x

[ 5(x 2

3 x) 4

( 2 x +

1 2 (3x)

− 1 (^2) · 3

)]

(x^2 +

3 x)^10

  1. f ′ (x) = π(xe

x )

(π−1)

[ xe

x

  • e

x

]

  1. f ′ (x) = 10

[ arctan(2x)

] 9 ·

1 + (2x)^2

  1. f ′ (x) =

(e 2 x

  • e)

− 1 (^2) (e^2 x^ · 2 + 0) 22. f ′(x) = (x^6 + 1)^5

[ 3(4x + 7) 2 (4)

]

  • (4x + 7) 3

[ 5(x 6

4 (6x 5 )

]

  1. f ′ (x) = 6(7x +

x 2

5

( 7 +

(x

2

− 1 (^2) · 2 x

)

  1. f ′ (x) =

(x − 1)(−x

− 2 − 2 x

− 3 ) − (x

− 1

  • x

− 2 )(1)

(x − 1)^2

  1. f

′ (x) =

x

− 1 (^3) +

x

− 5 (^2) 26. f ′(x) =

( 2 x + 5

7 x − 9

) −^1 2

[ (7x − 9)(2) − (2x + 5)(7)

(7x − 9) 2

]

  1. f ′ (x) = sec

2 x 28. f ′ (x) =

[ e

x (x

2

] (3x

2 ) + (x

3

[ e

x (2x) + (x

2

  • 3)e

x

]

  1. f

′ (x) =

(x

2

  • 2)(10x − 7) − (5x

2 − 7 x)(2x)

(x 2

2

  1. f

′ (x) = 3

[ ln(5x

2

] 2 ·

5 x 2

  • 9

(10x + 0)

  1. f ′ (x) =

(5x 2

3

[ 3(5x

2

2 (10x + 0)

]

  1. f ′ (x) = − csc

2 (6x) · 6

  1. f ′ (x) = sec

2 x(sec

2 x) + tan x

[ 2 · sec x(sec x tan x)

]

  1. f ′ (x) =

√ 1 − (2x)^2

x ln 2

  1. f ′ (x) =

( sec

2 (cos x)

) (− sin x) 36. f ′ (x) = 3

[ (x

2 − 1)

5 − x

] 2 ( 5(x

2 − 1)

4 · 2 x − 1

)

  1. f

′ (x) = sec x

( cos(3x) · 3

)

  • sin(3x)

( sec x tan x

)

  1. f ′ (x) =

x(x + 3) 4

[ 3(x − 1) 2 (1)

] − (x − 1) 3

[ x · 4(x + 3) 3 (1) + (x + 3) 4 (1)

]

x^2 (x + 3)^8

  1. f ′ (x) =

(3x^2 + 4x) · ln 5

· (6x + 4) 40.

dy

dx

e 5 y

3 − 5 xe^5 y

dy

dx

− 3 x

2 − y

x + 2y

dy

dx

3(y

2

2

(y 2

  • 1)(cos y) − 2 y sin y

Chain Rule Worksheet

Find the derivative of each function.

2 3 f ( ) x = (2 x − 5 ) x 2.

3 f ( ) x = 5 x − 2 x

  1. y = 3sin( x − 3) 4.

2 y = −2 cos( x +2)

2 2 g x ( ) = sin (3 x ) 6.

3 2 h x ( ) = sec ( x −5)

3 2 5 ( ) 3

x f x x e

− = 8.

2 23 ( ) 5

x x g x x e

= −

2 2 y = 3 x 4 x − 5 x + 1 10.

h t = t tt

3 3 2

y x x

4 3

g t t t

  1. g m ( ) = sin(cos( m )) 14. f ( ) x =cos(tan x )

3 2 4 h x ( ) = x + 2( x − 1) 16.

2 2 3 h m ( ) = m + 1( m +1)

2 3 2

t f t t

3 4 3

t f t t

7 4 5 h x ( ) = (2 x + 5) (3 x − 8) 20.

2 3 g n ( ) = (3 x − 2)(4 x +1)

2 3 f t ( ) = csc ( t ) 22.

4 2 f t ( ) =cot (2 t )

23 2 ( )

x x h x e

− = 24.

4 23 ( )

x x f x e

3 2

x h x x

3

4 2

s f s s s

sin^3 ( ) 5

x f x = 28.

4 ( ) 2

ex f x =