








Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
A series of mathematical equations and formulas related to one-dimensional wave equations, boundary conditions, and temperature distribution. It also includes a problem-solving example related to the deflection of a vibrating string. suitable for students studying advanced mathematics and physics.
Typology: Exercises
1 / 14
This page cannot be seen from the preview
Don't miss anything!
Dale Tulodal
of pte fovmulas CDT- One-Dirmensibra Wave^ E?uotion (vilbrallns ofa^ stolched (^) dorg) ue equation fos 04 il o Boundary Conditors yCO)= y (lD- Infla Cordtlins f y(z0)= a/0-f()-) ot Genesol Soluifo crit 4bo Col yCxyt)= Stn-
Sufloble Solutfon yCx= (apa +C2shpa) (Gcacpl c4sincpt
One-Dinmendona teat -fto uOale e9 uatfon
ot
u Cot)=o u (it)=O u (z/0) =f)
u Cxt)=CaCosprC sinp) PE
ron hoogeneaus boundary Condittons.
ae
(o,t)-o-> ond yClt)-0- -O ot-
and (^) yo)- Ye^ 5to )^ -> y
Sdutfo of (1) ts Cont cnMtbo Cas yat)= E^ Sto-X.(an Sto^ bo Cas^ ONE step Substthctfog (4)fnG) , get
ot
CrTt contan Cos 0 sthZan sin O- Sto AnCos COE-bnsonE/t t- O-0 (^0) stn (o|.o n
an-o fo^ 6),^
nTE
Substftuting6) n ), toe qal y(z0)-[ (z,+-0Jt-O COAt
C put n=
sin sofi))_nb (^) Sin (^) 6, (^) Sin 2 b (^) 3in Saa. (^) - Cowpau
b by (^) 0, b3- b4-^ br^ o
31 Cos 37E -yo sto 3Ho gfoTx_Cos
(x)ado(nM)
a (^) sto(on)d
ao-1 Cos(nx^ foDn O (^) Con (om L a -a- 40(1-(-1)") ® put e2n h y(xA)= aa(1-(-))sto^ (Om)^
(nt
du a Du ot the (^) Boudary candilbos^ ale u (o,t)=o > u (t)^ =0^ > ho (^) fnitio tempexctuse distibcfon h^ the^ kar Tho s ulzo)= P(X)>O The Vasious^ pocsble^ soludtfons (^) oF the^ heat Plouo (^) euaton by^ vahble Sepexable methomethao Sepesable cpt uCzt)= (1eaG a)ePt
(c4Cespz +^ C5^ npz)^ ee
The (^) only suttablo^ Solutfon s pt
Catpx +Cs^ dopx) g^ e
Substftute u^
100
a:
Now ot u (ot)= 90-(6) u C10,t)= 60>G)
distibutibn UsC)= uCot)^ +^ |^ u(107t)- u[ot) 90+ /Go- 10 0+ )x Us(=^ 90-3x^ (8) The tanslerst^ tempeyathuve^ dist^ olbttfoy
u(xA)- onnCospz + bnsfo Px) e (^) - he teropeahee u Cart) fro -the mteamecliate pe sbo &
u(xt) Us ()+^ ut^ (z,-4)
u Cxt) -^ 90-^ 3x 4E( Cotpx^ +bnshPX)e (10) sep
to ao) u C 90
+Sanospx +^ bo sinpx) eP^ 90 an+ bn(O)=
L0e get put an^ = (^) O h^10
90-3x
SioPx step- Subsitute C)o (U) = CuCxt)
10
Px) sn 10 (8x-46) sfo ol 40 U 8-40 (^) V sP^ NA
V= 10 Cos 10 Va 10 sf n2 10 10 2 (sx-46)^ (0. cos (^) +s s -(4) 10
u Cxt) = 9o-3 +
uCxr- (^) q0-3x - So(14G1)TO
10
fo tho bar act lime t fr the poblem ()