Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Calculus and Analytical Geometry: Tangents, Normals, and Integration, Cheat Sheet of Mathematics

Formula sheet with straight line, circle, parabola, ellips, method of differentiation, quadratic equation, sequence and series.

Typology: Cheat Sheet

2021/2022

Uploaded on 02/07/2022

oliver97
oliver97 🇺🇸

4.4

(43)

324 documents

1 / 51

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Page # 1
S.No. Topic Page No.
1. Straight Line 2 – 3
2. Circle 4
3. Parabola 5
4. Ellips 5 –6
5. Hyperbola 6 – 7
6. Limit of Function 8 – 9
7. Method of Differentiation 9 – 11
8. Application of Derivatves 11 – 13
9. Indefinite Intedration 14 – 17
10. Definite Integration 17 – 18
11. Fundamental of Mathematics 19 – 21
12. Quadratic Equation 22 – 24
13. Sequence & Series 24 – 26
14. Binomial Theorem 26 – 27
15. Permutation & Combinnation 28 – 29
16. Probability 29 – 30
17. Complex Number 3132
18. Vectors 32 – 35
19. Dimension 35 – 40
20. Solution of Triangle 41 – 44
21. Inverse Trigonometric Functions 44 – 46
22. Statistics 47 – 49
23. Mathematical Reasoning 49 – 50
24. Sets and Relation 50 – 51
INDEX
MATHEMATICS
FORMULA BOOKLET - GYAAN SUTRA
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17
pf18
pf19
pf1a
pf1b
pf1c
pf1d
pf1e
pf1f
pf20
pf21
pf22
pf23
pf24
pf25
pf26
pf27
pf28
pf29
pf2a
pf2b
pf2c
pf2d
pf2e
pf2f
pf30
pf31
pf32
pf33

Partial preview of the text

Download Calculus and Analytical Geometry: Tangents, Normals, and Integration and more Cheat Sheet Mathematics in PDF only on Docsity!

S.No. Topic Page No.

INDEX MATHEMATICS

    1. Straight Line 2 –
    1. Circle
    1. Parabola
    1. Ellips 5 –
    1. Hyperbola 6 –
    1. Limit of Function 8 –
    1. Method of Differentiation 9 –
    1. Application of Derivatves 11 –
    1. Indefinite Intedration 14 –
    1. Definite Integration 17 –
    1. Fundamental of Mathematics 19 –
    1. Quadratic Equation 22 –
    1. Sequence & Series 24 –
    1. Binomial Theorem 26 –
    1. Permutation & Combinnation 28 –
    1. Probability 29 –
    1. Complex Number 31 –
    1. Vectors 32 –
    1. Dimension 35 –
    1. Solution of Triangle 41 –
    1. Inverse Trigonometric Functions 44 –
    1. Statistics 47 –
    1. Mathematical Reasoning 49 –
    1. Sets and Relation 50 –

MATHEMATICS

FORMULA BOOKLET - GYAAN SUTRA

STRAIGHT LINE

1. Distance Formula:

2 2 d  (x – x ) 1 2  (y – y ) 1 2.

2. Section Formula :

x = m n

mx 2 n x 1

; y = m n

my 2 n y 1

.

3. Centroid, Incentre & Excentre:

Centroid G  

y y y , 3

x 1 x 2 x 3 1 2 3 ,

Incentre I (^)  

a b c

ay by cy , a b c

ax 1 bx 2 cx 3 1 2 3

Excentre I 1 

a b c

ay by cy , a b c

ax 1 bx 2 cx 3 1 2 3

4. Area of a Triangle:

 ABC =

x y 1

x y 1

x y 1

2

1

3 3

2 2

1 1

5. Slope Formula:

Line Joining two points (x 1 y 1 ) & (x 2 y 2 ), m = 1 2

1 2 x x

y y

6. Condition of collinearity of three points:

x y 1

x y 1

x y 1

3 3

2 2

1 1 = 0

7. Angle between two straight lines :

tan  = 1 2

1 2 1 m m

m m

.

CIRCLE

1. Intercepts made by Circle x 2 + y 2 + 2gx + 2fy + c = 0 on the Axes:

(a) 2 g c 2  on x -axis (b) 2 f c 2  on y - aixs

2. Parametric Equations of a Circle:

x = h + r cos  ; y = k + r sin 

3. Tangent :

(a) Slope form : y = mx ± (^) a 1  m^2

(b) Point form : xx 1 + yy 1 = a^2 or T = o (c) Parametric form : x cos  + y sin  = a.

4. Pair of Tangents from a Point: SS 1 = T². 5. Length of a Tangent : Length of tangent is S 1 6. Director Circle: x^2 + y^2 = 2a^2 for x^2 + y^2 = a^2 7. Chord of Contact: T = 0 1. Length of chord of contact = 2 2 R L

2 L R

  1. Area of the triangle formed by the pair of the tangents & its chord of

contact = (^22)

3

R L

R L

  1. Tangent of the angle between the pair of tangents from (x 1 , y 1 )

= 

2 2 L R

2 R L

  1. Equation of the circle circumscribing the triangle PT 1 T 2 is : (x  x 1 ) (x + g) + (y  y 1 ) (y + f) = 0. 8. Condition of orthogonality of Two Circles: 2 g 1 g 2 + 2 f 1 f 2 = c 1 + c 2. 9. Radical Axis : S 1  S 2 = 0 i.e. 2 (g 1  g 2 ) x + 2 (f 1  f 2 ) y + (c 1  c 2 ) = 0. 10. Family of Circles: S 1 + K S 2 = 0, S + KL = 0.

PARABOLA

1. Equation of standard parabola :

y^2 = 4ax, Vertex is (0, 0), focus is (a, 0), Directrix is x + a = 0 and Axis is y = 0. Length of the latus rectum = 4a, ends of the latus rectum are L(a, 2a) & L’ (a,  2a).

2. Parametric Representation: x = at² & y = 2at 3. Tangents to the Parabola y² = 4ax: 1. Slope form y = mx + m

a (m  0) 2. Parametric form ty = x + at^2

  1. Point form T = 0 4. Normals to the parabola y² = 4ax :

y  y 1 = 2 a

y 1  (^) (x  x 1 ) at (x1, y 1 )^ ; y = mx^ ^ 2am^ ^ am

(^3) at (am (^2)  2am) ;

y + tx = 2at + at^3 at (at^2 , 2at).

ELLIPSE

1. Standard Equation : 2

2

2

2

b

y

a

x  = 1, where a > b & b² = a² (1  e²).

Eccentricity: e = 2

2

a

b 1  , (0 < e < 1),^ Directrices :^ x = ±^ e

a .

Focii : S  (± a e, 0). Length of, major axes = 2a and minor axes = 2b Vertices : A ( a, 0) & A  (a, 0).

Latus Rectum : = ^ 

2

2 2 a 1 e a

2 b  

2. Auxiliary Circle : x² + y² = a² 3. Parametric Representation : x = a cos  & y = b sin  4. Position of a Point w.r.t. an Ellipse:

The point P(x1, y 1 ) lies outside, inside or on the ellipse according as;

b

y

a

x 2

2 1 2

2 1   > < or = 0.

5. Position of A Point 'P' w.r.t. A Hyperbola :

S 1  1

b

y

a

x 2

2 1 2

2 1   >, = or < 0 according as the point (x1, y 1 ) lies inside, on

or outside the curve.

6. Tangents :

(i) Slope Form : y = m x (^)  a 2 m^2 b^2

(ii) Point Form : at the point (x 1, y 1 ) is (^1) b

y y

a

x x 2

1 2

1  .

(iii) Parametric Form : (^) 1 b

yt an

a

x sec 

.

7. Normals :

(a) at the point P (x 1 , y 1 ) is 1

2

1

2

y

b y

x

a x  = a^2 + b^2 = a^2 e^2.

(b) at the point P (a sec , b tan ) is 

 tan

b y

sec

a x = a^2 + b^2 = a^2 e^2.

(c) Equation of normals in terms of its slope 'm' are y

= mx 

 

2 2 2

2 2

a b m

a b m

.

8. Asymptotes :^0 b

y

a

x   and 0 b

y

a

x  .

Pair of asymptotes :^0 b

y

a

x 2

2

2

2  .

9. Rectangular Or Equilateral Hyperbola : xy = c^2 , eccentricity is 2.

Vertices : (± c,^ ±c) ; Focii : (^)  2 c , 2 c. Directrices : x + y =  (^2) c

Latus Rectum ( l ) :  = 2 2 c = T.A. = C.A.

Parametric equation x = ct, y = c/t, t  R – {0}

Equation of the tangent at P (x 1 ,^ y 1 ) is 1 y 1

y

x

x  (^) = 2 & at P (t) is t

x

  • t y = 2 c.

Equation of the normal at P (t) is x t^3  y t = c (t^4  1). Chord with a given middle point as (h, k) is kx + hy = 2hk.

LIMIT OF FUNCTION

1. Limit of a function f(x) is said to exist as x  a when,

^  h 0

Limit f (a  h) =  h 0

Limit (^) f (a + h) = some finite value M.

(Left hand limit) (Right hand limit)

2. Indeterminant Forms:

,

, 0 , º, 0º,and 1  .

3. Standard Limits :

x 0

Limit  (^) x

sin x = (^) x 0

Limit  (^) x

tan x = (^) x 0

Limit  (^) x

tan x

 1

= (^) x 0

Limit  (^) x

sin x

 1

= (^) x 0

Limit  (^) x

e 1

x  = (^) x 0

Limit  x

n( 1 x ) = 1

x 0

Limit  (1 + x)

1/x (^) = x

Limit

x

x

 (^) = e, x 0

Limit  x

a 1 x  = logea, a > 0,

x a

Limit  x a

x a

n n

= nan – 1.

4. Limits Using Expansion

(i) .........a^0 3!

x ln a

2!

xln a

1!

xln a a 1

2 2 3 3 x      

(ii) ...... 3!

x

2!

x

1!

x e 1

2 3 x     

(iii) ln (1+x) = .........for^1 x^1 4

x

3

x

2

x x

2 3 4       

(iv) ..... 7!

x

5!

x

3!

x sinx x

3 5 7     

2. Basic Theorems

1. dx

d (f ± g) = f(x) ± g(x) 2. dx

d (k f(x)) = k dx

d f(x)

3. dx

d (f(x). g(x)) = f(x) g(x) + g(x) f(x)

4. dx

d 

g(x )

f (x )

g(x)

g(x)f(x) f(x)g(x ) 2

5. dx

d (f(g(x))) = f(g(x)) g(x)

Derivative Of Inverse Trigonometric Functions.

dx

d sin x

  • 1

     2 

1 x

, dx

d cos x

  • 1 = – 2 1 x

, for – 1 < x < 1.

dx

d tan x

  • 1 = (^2) 1 x

, dx

d cot x

  • 1 = – (^2) 1 x

(x  R)

dx

d sec x

  • 1

     |x| x 1 

2 

, dx

d cosec x

  • 1

= – |x| x 1

2 

, for x  (– , – 1)  (1, )

3. Differentiation using substitution

Following substitutions are normally used to simplify these expression.

(i) (^) x 2  a^2 by substituting x = a tan , where – 2

<  2

(ii) (^) a 2  x^2 by substituting x = a sin , where – 2

  2

(iii) (^) x 2  a^2 by substituting x = a sec , where [0, ],  2

(iv) a x

x a

by substituting x = a cos , where (0, ].

4. Parametric Differentiation

If y = f() & x = g() where is a parameter, then 

dx/d

dy/ d

dx

dy .

5. Derivative of one function with respect to another

Let y = f(x); z = g(x) then g'(x)

f'(x )

dz/d x

dy/d x

d z

d y  .

6. If F(x) =

u(x) v(x) w(x )

l(x) m(x) n(x )

f(x) g(x) h(x )

, where f, g, h, l, m, n, u, v, w are differentiable

functions of x then F (x) = u(x) v(x) w(x )

l(x) m(x) n(x )

f'(x) g'(x) h'(x )

u(x) v(x) w(x )

l'(x) m'(x) n'(x )

f(x) g(x) h(x )

u'(x) v'(x) w'(x )

l(x) m(x) n(x )

f(x) g(x) h(x )

APPLICATION OF DERIVATIVES

1. Equation of tangent and normal

Tangent at (x 1 , y 1 ) is given by (y – y 1 ) = f(x 1 ) (x – x 1 ) ; when, f(x 1 ) is real.

And normal at (x 1 , y 1 ) is (y – y 1 ) = – f(x)

(x – x 1 ), when f(x 1 ) is nonzero

real.

2. Tangent from an external point

Given a point P(a, b) which does not lie on the curve y = f(x), then the equation of possible tangents to the curve y = f(x), passing through (a, b) can be found by solving for the point of contact Q.

f(h) = h a

f(h) b

7. Lagrange’s Mean Value Theorem (LMVT) :

If a function f defined on [a, b] is

(i) continuous on [a, b] and (ii) derivable on (a, b) then there exists at least one real numbers between a and b (a < c < b) such

that b a

f(b) f(a )

= f(c)

8. Useful Formulae of Mensuration to Remember : 1. Volume of a cuboid = bh. 2. Surface area of cuboid = 2(b + bh + h). 3. Volume of cube = a^3 4. Surface area of cube = 6a^2 5. Volume of a cone = 3

r 2 h.

6. Curved surface area of cone = r ( = slant height) 7. Curved surface area of a cylinder = 2rh. 8. Total surface area of a cylinder = 2rh + 2r^2. 9. Volume of a sphere = 3

r^3.

10. Surface area of a sphere = 4r^2. 11. Area of a circular sector = 2

r^2 , when  is in radians.

12. Volume of a prism = (area of the base) × (height). 13. Lateral surface area of a prism = (perimeter of the base) × (height). 14. Total surface area of a prism = (lateral surface area) + 2 (area of the base) (Note that lateral surfaces of a prism are all rectangle). 15. Volume of a pyramid = 3

(area of the base) × (height).

16. Curved surface area of a pyramid = 2

(perimeter of the base) ×

(slant height). (Note that slant surfaces of a pyramid are triangles).

INDEFINITE INTEGRATION

1. If f & g are functions of x such that g(x) = f(x) then,

 f(x)^ dx = g(x)^ + c^ ^

d

d x

{g(x)+c} = f(x), where c is called the constant of

integration.

2. Standard Formula:

(i) (^)  (ax + b)n^ dx =

ax b

a n

n

 1

  • c, n   1

(ii) (^) 

dx

ax  b

=

a

n (ax + b) + c

(iii) (^)  eax+b^ dx =

a

eax+b^ + c

(iv) (^)  apx+q^ dx =

p

a

n a

p x q

  • c; a > 0

(v) (^)  sin (ax + b) dx = 

a

cos (ax + b) + c

(vi) (^)  cos (ax + b) dx =

a

sin (ax + b) + c

(vii) (^)  tan(ax + b) dx =

a

n sec (ax + b) + c

(viii) (^)  cot(ax + b) dx =

a

n sin(ax + b)+ c

(ix) (^)  sec² (ax + b) dx =

1

a

tan(ax + b) + c

(x) (^)  cosec²(ax + b) dx = (^) 

1

a

cot(ax + b)+ c

3. Integration by Subsitutions

If we subsitute f(x) = t, then f (x) dx = dt

4. Integration by Part :

  

f (x)g(x) dx = f(x)^ ^  

g( x)dx – ^ f(x)^ ^ g(x)^ dx dx dx

d  

5. Integration of type

2 (^2 )

dx dx , , ax bx c dx ax bx c (^) ax bx c

  

Make the substitution

b x t 2a

6. Integration of type

2 (^2 )

px q px q dx, dx, (px q) ax bx c dx ax bx c (^) ax bx c

  

Make the substitution x +

b

2a

= t , then split the integral as some of two

integrals one containing the linear term and the other containing constant term.

7. Integration of trigonometric functions

(i) (^) 2

dx

a b sin x

OR^ 2

dx

a bcos x

OR (^) 2 2

dx

a sin x  b sin x cos x c cos x

put tan x = t.

(ii)

dx

a b sin x

OR

dx

a bcos x

OR

dx

a  b sin x c cos x

put tan^

x

2

= t

(iii)

a.cos x b.sin x c

.cos x m.sin x n

 

dx. Express Nr  A(Dr) + B

d

dx

(Dr) + c & proceed.

8. Integration of type

2

4 2

x 1 dx x Kx 1

 where K is any constant.

Divide Nr & Dr by x² & put x

x

= t.

9. Integration of type

dx

(ax  b) px q

OR (^) 2

dx

(ax  bx  c) px q

 ; put px + q = t^2.

10. Integration of type

2

dx

(ax  b) px  qx r

 (^) , put ax + b =

t

;

2 2

dx

(ax  b) px q

 (^) , put x =

t

DEFINITE INTEGRATION

Properties of definite integral

1.

b

a

f (x )dx = 

b

a

f (t )dt 2.

b

a

f (x )dx = –^ 

a

b

f( x )dx

3. (^) 

b

a

f (x )dx = 

c

a

f (x )dx + 

b

c

f (x )dx

4.  

a

a

f (x )dx = 

a

0

(f (x) f( x ))dx =

 

0 , f(–x) –f(x )

2 f(x)dx , f(–x) f(x )

a

0

5.

b

a

f( x )dx = 

b

a

f( a b x )dx

FUNDAMENTAL OF MATHEMATICS

Intervals :

Intervals are basically subsets of R and are commonly used in solving inequalities or in finding domains. If there are two numbers a, b  R such that a < b, we can define four types of intervals as follows :

Symbols Used (i) Open interval : (a, b) = {x : a < x < b} i.e. end points are not included. ( ) or ] [ (ii) Closed interval : [a, b] = {x : a  x  b} i.e. end points are also included. [ ] This is possible only when both a and b are finite. (iii) Open-closed interval : (a, b] = {x : a < x  b} ( ] or ] ] (iv) Closed - open interval : [a, b) = x : a  x < b} [ ) or [ [

The infinite intervals are defined as follows : (i) (a, ) = {x : x > a} (ii) [a, ) = {x : x  a} (iii) (– , b) = {x : x < b} (iv) (, b] = {x : x  b} (v) (– ) = {x : x  R}

Properties of Modulus :

For any a, b  R |a|  0, |a| = |–a|, |a|  a, |a|  –a, |ab| = |a| |b|,

b

a

|b|

| a | , |a + b|  |a| + |b|, |a – b|  ||a| – |b||

Trigonometric Functions of Sum or Difference of Two Angles:

(a) sin (A ± B) = sinA cosB ± cosA sinB  2 sinA cosB = sin(A+B) + sin(AB) and and 2 cosA sinB = sin(A+B)  sin(AB)

(b) cos (A ± B) = cosA cosB  sinA sinB  2 cosA cosB = cos(A+B) + cos(AB) and 2sinA sinB = cos(AB)  cos(A+B) (c) sin²A  sin²B = cos²B  cos²A = sin (A+B). sin (A B) (d) cos²A  sin²B = cos²B  sin²A = cos (A+B). cos (A  B)

(e) cot (A ± B) = cotB cotA

cotAcotB 1

(f) tan (A + B + C) = 1 tanAtanB tanBtanC tanCtanA

tanA tanB tanC tanAtanBtan C

  

.

Factorisation of the Sum or Difference of Two Sines or Cosines:

(a) sinC + sinD = 2 sin 2

C D

cos 2

C D

(b) sinC  sinD = 2 cos 2

C D

sin 2

C D

(c) cosC + cosD = 2 cos 2

C D

cos 2

C D

(d) cosC  cosD =  2 sin 2

C D

sin 2

C D

Multiple and Sub-multiple Angles :

(a) cos 2A = cos²A  sin²A = 2cos²A  1 = 1  2 sin²A; 2 cos² 2

= 1 + cos , 2 sin² 2

= 1  cos .

(b) sin 2A = 1 tan A

2 tan A 2 

, cos 2A = 1 tanA

1 tan A 2

2

(c) sin 3A = 3 sinA  4 sin^3 A (d) cos 3A = 4 cos^3 A  3 cosA

(e) tan 3A = 1 3 tan A

3 tanA tan A 2

3

Important Trigonometric Ratios:

(a) sin n  = 0 ; cos n  =  1 ; tan n  = 0, where n  

(b) sin 15° or sin 12

= 2 2

= cos 75° or cos 12

;

cos 15° or cos 12

= 2 2

= sin 75° or sin 12

;

tan 15° = 31

= (^2)  3 = cot 75° ; tan 75°

= 31

= (^2)  3 = cot 15°

(c) sin 10

or sin 18° = 4

& cos 36° or cos 5

= 4