Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Matrices: Linear Algebra, Lecture notes of Linear Algebra

Contains notes and questions of Eigen values and vectors, Cayley-Hamilton theorem, and properties.

Typology: Lecture notes

2021/2022

Available from 01/17/2023

_achal_acharya
_achal_acharya ๐Ÿ‡ฎ๐Ÿ‡ณ

1 document

1 / 23

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
0
Matrices
LINEAR ALGEBRA
2023
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17

Partial preview of the text

Download Matrices: Linear Algebra and more Lecture notes Linear Algebra in PDF only on Docsity!

Matrices

LINEAR ALGEBRA

2023

LINEAR ALGEBRA

Linear Algebra: Illustration of a few Engineering Examples with Application of Linear Algebra (Lecture by the Respective Domain Faculty members) - Eigenvalues and Eigenvectors of a real matrix โ€“ Characteristic equation โ€“ Properties of Eigenvalues and Eigenvectors โ€“ Cayley-Hamilton theorem โ€“ Diagonalization of matrices โ€“ Reduction of a quadratic form to canonical form by orthogonal transformation โ€“ Nature of quadratic forms. Linear Algebra, mathematical discipline that deals with vectors and matrices and, more generally, with vector spaces and linear transformations. Unlike other parts of mathematics that are frequently invigorated by new ideas and unsolved problems, linear algebra is very well understood. Its value lies in its many applications, from mathematical physics to modern algebra and coding theory. Recapitulations: Matrix: Matrix is an array of numbers in row and columns. A matrix with โ€˜๐‘šโ€™ rows and โ€˜๐‘›โ€™ columns is called as ๐‘š ร— ๐‘› matrix. Square Matrix: If number of rows and columns are equal, then the matrix is called as square matrix. 1 2 3 Ex. ๐ด = [4 5 6] 7 8 9 The elements 1, 5, 9 are called as leading diagonal elements. Unit Matrix: A matrix which has unity for all its diagonal elements is called as unit matrix or identity matrix of order โ€˜๐‘›โ€™ and is denoted by ๐ผ. 1 0 0 Ex. ๐ผ = [0 1 0] 0 0 1 Eigenvalues and Eigenvectors: Let A be a square matrix, if there exist a scalar ๐œ† and a nonzero column matrix ๐‘‹ such that (๐ด โˆ’ ๐œ†๐ผ)๐‘‹ = 0, then ๐œ† is called an Eigenvalue of ๐ด and ๐‘‹ is called Eigenvector corresponding to Eigenvalue of ๐ด. Characteristic Equations:

  • The characteristic equation of 3 ร— 3 matrix A is ๐œ†^3 โˆ’ ๐‘  1 ๐œ†^2 + ๐‘  2 ๐œ† โˆ’ ๐‘  3 = 0, where ๐‘  1 = sum of leading diagonal elements, ๐‘  2 = sum of minor of leading diagonal elements,

[0]

[ 1 5 โˆ’ ๐œ† 1 ] [๐‘ฅ 2 ] = [0]

3 1 1 โˆ’ ๐œ† ๐‘ฅ 3 0 i.e., Case i). If ๐œ† = 3, (A) becomes (1 โˆ’ ๐œ†)๐‘ฅ 1 + ๐‘ฅ 2 + 3๐‘ฅ 3 = 0 ๐‘ฅ 1 + (5 โˆ’ ๐œ†)๐‘ฅ 2

  • ๐‘ฅ 3 = 0 } ---------- (A) 3๐‘ฅ 1 + ๐‘ฅ 2 + (1 โˆ’ ๐œ†)๐‘ฅ 3 = 0 (โˆ’2)๐‘ฅ 1 + ๐‘ฅ 2 + 3๐‘ฅ 3 = 0 -------------(1) ๐‘ฅ 1 + (2)๐‘ฅ 2 + ๐‘ฅ 3 = 0 ------------- (2) 3๐‘ฅ 1 + ๐‘ฅ 2 + (โˆ’2)๐‘ฅ 3 = 0 ------------- (3) Solving these equations ๐‘ฅ 1 ๐‘ฅ 2 ๐‘ฅ 3 = 1 โˆ’ 6 3 โˆ’ (โˆ’2) โˆ’4 โˆ’ 1 ๐‘ฅ 1 ๐‘ฅ 2 ๐‘ฅ 3 = = โˆ’5 5 โˆ’ โˆ’5 โˆ’ Eigenvector for ๐œ† = 3 is ๐‘‹ 1 = [ 5] or [ 1]. โˆ’5 โˆ’ Case ii). If ๐œ† = 6, (A) becomes

3๐‘ฅ 1 + ๐‘ฅ 2 + (โˆ’5)๐‘ฅ 3 = 0 ------------- (6) Solving these equations ๐‘ฅ 1 ๐‘ฅ 2 ๐‘ฅ 3 = 1 โˆ’ (โˆ’3) 3 โˆ’ (โˆ’5) 5 โˆ’ 1 ๐‘ฅ 1 ๐‘ฅ 2 ๐‘ฅ 3 = = 4 8 4 4 1 Eigenvector for ๐œ† = 6 is ๐‘‹ 2 = [ 8] or [ 2] 4 1 Case iii). If ๐œ† = โˆ’2, (A) becomes 3 ๐‘ฅ 1 + ๐‘ฅ 2 + 3๐‘ฅ 3 = 0 ------------- (7) ๐‘ฅ 1 + (7)๐‘ฅ 2 + ๐‘ฅ 3 = 0 ------------- (8) 3๐‘ฅ 1 + ๐‘ฅ 2 + (3)๐‘ฅ 3 = 0 ------------- (9) Solving these equations ๐‘ฅ 1 ๐‘ฅ 2 ๐‘ฅ 3 = 1 โˆ’ 21 3 โˆ’ (3) 21 โˆ’ 1 ๐‘ฅ 1 ๐‘ฅ 2 ๐‘ฅ 3 = = โˆ’20 0 20 โˆ’20 โˆ’ Eigenvector for ๐œ† = โˆ’2 is ๐‘‹ 3 = [ 0 ] or [ 0]. 20 1 8 โˆ’6 2

i.e., (8 โˆ’ ๐œ†)๐‘ฅ 1 โˆ’ 6๐‘ฅ 2 + 2๐‘ฅ 3 = 0 โˆ’6๐‘ฅ 1 + (7 โˆ’ ๐œ†)๐‘ฅ 2 โˆ’ 4๐‘ฅ 3 = 0}------------- (A) 2๐‘ฅ 1 โˆ’ 4๐‘ฅ 2 + (3 โˆ’ ๐œ†)๐‘ฅ 3 = 0 Case i). If ๐œ† = 0, (A) becomes (8)๐‘ฅ 1 โˆ’ 6๐‘ฅ 2 + 2๐‘ฅ 3 = 0 ------------- (1) โˆ’6๐‘ฅ 1 + (7)๐‘ฅ 2 โˆ’ 4๐‘ฅ 3 = 0 ------------- (2) 2๐‘ฅ 1 โˆ’ 4๐‘ฅ 2 + (3)๐‘ฅ 3 = 0 ------------- (3) Solving these equations ๐‘ฅ 1 ๐‘ฅ 2 ๐‘ฅ 3 = 24 โˆ’ 14 โˆ’12 โˆ’ (โˆ’32) 56 โˆ’ 36 ๐‘ฅ 1 ๐‘ฅ 2 ๐‘ฅ 3 = = 10 20 20 10 1 Eigenvector for ๐œ† = 0 is ๐‘‹ 1 = [ 20] or [2]. 20 2 Case ii). If ๐œ† = 3, (A) becomes 5๐‘ฅ 1 โˆ’ 6๐‘ฅ 2 + 2๐‘ฅ 3 = 0 ------------- (4) โˆ’6๐‘ฅ 1 + (4)๐‘ฅ 2 โˆ’ 4๐‘ฅ 3 = 0 ------------- (5) 2๐‘ฅ 1 โˆ’ 4๐‘ฅ 2 + (0)๐‘ฅ 3 = 0 ------------- (6) Solving these equations ๐‘ฅ 1 ๐‘ฅ 2 ๐‘ฅ 3 = = 24 โˆ’ 8 โˆ’12 โˆ’ (โˆ’20) 20 โˆ’ 36 ๐‘ฅ 1 ๐‘ฅ 2 ๐‘ฅ 3

Eigenvector for ๐œ† = 3 is ๐‘‹ 1 = [ 8 ] or [ 1 ]. โˆ’16 โˆ’ Case iii). If ๐œ† = 15, (A) becomes โˆ’7๐‘ฅ 1 โˆ’ 6๐‘ฅ 2 + 2๐‘ฅ 3 = 0 ------------- (7) โˆ’6๐‘ฅ 1 โˆ’ 8๐‘ฅ 2 โˆ’ 4๐‘ฅ 3 = 0 ------------- (8) 2๐‘ฅ 1 โˆ’ 4๐‘ฅ 2 โˆ’ 12๐‘ฅ 3 = 0 ------------- (9) Solving these equations ๐‘ฅ 1 ๐‘ฅ 2 ๐‘ฅ 3 = 24 โˆ’ (โˆ’16) โˆ’12 โˆ’ (28) 56 โˆ’ 36 ๐‘ฅ 1 ๐‘ฅ 2 ๐‘ฅ 3 = = 40 โˆ’40 20 40 2 Eigenvector for ๐œ† = 15 is ๐‘‹ 1 = [ โˆ’40] or [โˆ’2]. 20 1 Practice Problems

  1. Find the Eigenvalues and Eigenvectors of the matrices: (a) [ 4 3 ] (b) [ 1 4 ] 2 9 3 2 7 โˆ’2 0
  2. Find the Eigenvalues and Eigenvectors of the matrix[โˆ’2 6 โˆ’2]. 0 โˆ’2 5
  1. If โˆ’2 and 6 are the two Eigenvalues of ๐ด = [1 5 1]. Find the third Eigenvalue of 3 1 1 ๐ด. 1 1 3 Solution. Let ๐ด = [1 5 1]. 3 1 1 Let ๐œ† 1 , ๐œ† 2 , ๐œ† 3 are the Eigenvalues of ๐ด. We know that, Sum of Eigenvalues = Sum of main diagonals. ๐œ† 1 + ๐œ† 2 + ๐œ† 3 = ๐‘Ž 11 + ๐‘Ž 22 + ๐‘Ž 33 โˆ’2 + 6 + ๐œ† 3 = 1 + 5 + 1 ๐œ† 3 = 3. Therefore, the Eigenvalues of ๐ด are โˆ’2, 6, 3. Practice Problems 2 2 1
  2. Two Eigenvalues of the matrix ๐ด = [1 3 1] are equal to 1 each. Find the third 1 2 2 Eigenvalue.
    1. If 2, โˆ’1,โˆ’2 are the Eigenvalues of the matrix ๐ด, then what is the Eigenvalues of the matrix ๐ด 2 โˆ’ 2๐ผ. Cayley-Hamilton Theorem Every square matrix satisfies its own characteristic equation. Uses. To calculate 1). the positive integral powers of ๐ด and 2). the inverse of a non-singular square matrix ๐ด. Problems 1 3 7
  1. Verify Cayley-Hamilton theorem for the matrix [4 2 3] and also use it to find ๐ด โˆ’ . 1 2 1 1 3 7 Solution. Given ๐ด = [4 2 3]

2 โˆ’ 4๐ด โˆ’ 20๐ผ โˆ’ 35๐ด โˆ’ = 0 ๐ด โˆ’ = [๐ด 2 โˆ’ 4๐ด โˆ’ 20๐ผ]. 20 23 23 1 3 7 35 0 0 ๐ด โˆ’ = [[15 22 37] โˆ’ 4 [4 2 3] โˆ’ 20 [ 0 35 0 ]] 10 9 14 1 2 1 0 0 35 20 23 23 4 12 28 20 0 0 = [[15 22 37] โˆ’ [16 8 12] โˆ’ [ 0 20 0 ]] 10 9 14 4 8 4 0 0 20 โˆ’4 11 โˆ’ = [โˆ’1โˆ’6 25 ]. 6 1 โˆ’ 2 1 1

  1. Find the characteristic equation of the matrix, ๐ด = [0 1 0] and hence compute 1 1 2 ๐ด โˆ’ . Also, find the matrix represented by ๐ด 8 โˆ’ 5๐ด 7
  • 7๐ด 6 โˆ’ 3๐ด 5
  • ๐ด 4 โˆ’ 5๐ด 3

8๐ด 2 โˆ’ 2๐ด + ๐ผ. 2 1 1 Solution. Given ๐ด = [0 1 0] 1 1 2 The Characteristic equation of ๐ด is ๐œ† 3 โˆ’ ๐‘  1 ๐œ† 2 + ๐‘  2 ๐œ† โˆ’ ๐‘  3 = 0. ๐‘  1 = 2 + 1 + 2 = 5 1 0 2 1 2 1 (2 โˆ’ 0) + (4 โˆ’ 1) + (2 โˆ’ 0) = 7 ๐‘  2 = |1 2| + |1 2| + |0 1| = 2 1 1 ๐‘  3 = |๐ด| = |0 1 0| = 2(2 โˆ’ 0) โˆ’ 1(0 โˆ’ 0) + 1(0 โˆ’ 1) = 3 1 1 2 Therefore, the characteristic equation is ๐œ† 3 โˆ’ 5๐œ† 2

  • 7๐œ† โˆ’ 3 = 0. By Cayley-Hamilton theorem ๐ด 3 โˆ’ 5๐ด 2 + 7๐ด โˆ’ 3๐ผ = 0---------------(i)

Multiplying (i) by ๐ด โˆ’ , we get ๐ด 2 โˆ’ 5๐ด + 7๐ผ โˆ’ 3๐ด โˆ’ = 0 or ๐ด โˆ’ = 1 [๐ด 2 โˆ’ 5๐ด + 7๐ผ] 3 2 1 1 2 1 1 4 + 0 + 1 2 + 1 + 1 2 + 0 + 2 5 4 4 Now, ๐ด 2 = [0 1 0] [0 1 0] = [0 + 0 + 0 0 + 1 + 0 0 + 0 + 0] = [0 1 0] 1 1 2 1 1 2 2 + 0 + 2 1 + 1 + 2 1 + 0 + 4 4 4 5

If a square matrix ๐ด of order ๐‘› has ๐‘› linearly independent Eigenvectors, then a matrix ๐‘ƒ can be found such that ๐‘ƒ โˆ’ ๐ด๐‘ƒ is a diagonal matrix. Power of a matrix : Diagonalisation of a matrix is quite useful for obtaining powers of a matrix. ๐œ†1๐‘› 0 0 i.e., ๐ด ๐‘› = ๐‘ƒ๐ท ๐‘› ๐‘ƒ โˆ’ where ๐ท ๐‘› = [ 0 ๐œ† 2 ๐‘› 0 ] 0 0 ๐œ†3๐‘› 1 1 3

  1. Reduce the matrix ๐ด = [1 5 1] to the diagonal form. 3 1 1 Soln. The Eigenvalues of ๐ด (found in Ex 1. Page 2) are -2, 3, 6 and the Eigenvectors are (โˆ’1,0,1),(1, โˆ’1,1), (1,2,1). Writing these Eigenvectors as the three columns, the required transformation matrix is โˆ’1 1 1 ๐‘ƒ = [ 0โˆ’1 2]. 1 1 1 โˆ’1 1 1 ๐‘Ž 1 ๐‘ 1 ๐‘ 1 To find ๐‘ƒโˆ’1, |๐‘ƒ| = | 0 โˆ’1 2| = |๐‘Ž 2 ๐‘ 2 ๐‘ 2 | (say) 1 1 1 ๐‘Ž 3 ๐‘ 3 ๐‘ 3 โˆ’1 2 ๐ด 1 = | 11| = โˆ’3, ๐ต 1 = 2, ๐ถ 1 = 1, ๐ด 2 = 0, ๐ต 2 = โˆ’2, ๐ถ 2 = 2, ๐ด 3 = 3, ๐ต 3 = 2, ๐ถ 3 = 1. Also |๐‘ƒ| = ๐‘Ž 1 ๐ด 1 + ๐‘ 1 ๐ต 1 + ๐‘ 1 ๐ถ 1 = โˆ’1(โˆ’3) + 1(2) + 1(1) = 6 ๐ด 1 ๐ด 2 ๐ด 3 โˆ’3 0 3 ๐‘ƒโˆ’1 = 1 [๐ต 1 ๐ต 2 ๐ต 3 ] = [ 2 โˆ’2 2] |๐‘ƒ|

Thus ๐ท = ๐‘ƒ โˆ’ ๐ด๐‘ƒ = [ 0 0

3 0].

  1. If the diagonal form of the matrix ๐ด , then find ๐ด 4 . Solution: The characteristic equation of ๐ด is โˆ’1 โˆ’ ๐œ† 2 โˆ’ | 1 2 โˆ’ ๐œ† 1 | = 0 โˆ’1 โˆ’1 โˆ’๐œ† ๐œ† 3 โˆ’ ๐œ† 2 โˆ’ 5๐œ† + 5 = 0. Solving, we get ๐œ† as the Eigenvalues of ๐ด. When ๐œ† = 1, the corresponding Eigenvector is given by โˆ’2๐‘ฅ + 2๐‘ฆ โˆ’ 2๐‘ง = 0, ๐‘ฅ + ๐‘ฆ + ๐‘ง = 0, โˆ’๐‘ฅ โˆ’ ๐‘ฆ โˆ’ ๐‘ง = 0. ๐‘ฅ ๐‘ฆ ๐‘ง Solving the first two equations, we get = = giving the Eigenvector (1,0, โˆ’1), 4 0 โˆ’ when ๐œ† , the corresponding Eigenvector is given by , ๐‘ฅ ,. Solving 2 nd and 3 rd equations. We get ๐‘ฅ ๐‘ฆ ๐‘ง ๐‘ฅ ๐‘ฆ ๐‘ง Giving the Eigenvector. Similarly, the Eigenvector corresponding to ๐œ†. Writing the three Eigenvectors as the three columns, we get the transformation matrix as ๐‘ƒ ๐‘ 1 ๐‘ 1 To find ๐‘ƒ โˆ’ , |๐‘ƒ| ๐‘ 2 ๐‘ 2 | (say ๐‘ 3 ๐‘ 3 ๐ด

The symmetric matrix ๐ด is called the matrix of the quadratic ๐‘Ž๐‘› ๐‘Ž๐‘›๐‘› form ๐‘„. The matrix corresponding to the quadratic form is co-eff ๐‘๐‘œ โˆ’ ๐‘’๐‘“๐‘“ ๐‘ฅ 1 1 ๐‘๐‘œ โˆ’ ๐‘’๐‘“๐‘“ ๐‘ฅ 1 ๐‘ฅ 2 ๐‘๐‘œ โˆ’ ๐‘’๐‘“๐‘“ ๐‘ฅ 1 ๐‘ฅ 3 ๐‘๐‘œ โˆ’ ๐‘’๐‘“๐‘“ ๐‘ฅ 2 ๐‘ฅ 1 ๐‘๐‘œ โˆ’ ๐‘’๐‘“๐‘“ ๐‘ฅ 22 ๐‘๐‘œ โˆ’ ๐‘’๐‘“๐‘“ ๐‘ฅ 2 ๐‘ฅ 3 2 [ ๐‘๐‘œ โˆ’ ๐‘’๐‘“๐‘“ ๐‘ฅ 3 ๐‘ฅ 1 ๐‘๐‘œ โˆ’ ๐‘’๐‘“๐‘“ ๐‘ฅ 3 ๐‘ฅ 2 ๐‘๐‘œ โˆ’ ๐‘’๐‘“๐‘“ ๐‘ฅ 3 ] Note: ๐‘๐‘œ โˆ’ ๐‘’๐‘“๐‘“ ๐‘ฅ 1 ๐‘ฅ 2 = ๐‘๐‘œ โˆ’ ๐‘’๐‘“๐‘“ ๐‘ฅ 2 ๐‘ฅ 1 ๐‘๐‘œ โˆ’ ๐‘’๐‘“๐‘“ ๐‘ฅ 2 ๐‘ฅ 3 = ๐‘๐‘œ โˆ’ ๐‘’๐‘“๐‘“ ๐‘ฅ 3 ๐‘ฅ 2 ๐‘๐‘œ โˆ’ ๐‘’๐‘“๐‘“ ๐‘ฅ 1 ๐‘ฅ 3 = ๐‘๐‘œ โˆ’ ๐‘’๐‘“๐‘“ ๐‘ฅ 3 ๐‘ฅ 1.

  1. Write the matrix of the quadratic form 2๐‘ฅ 1 2 โˆ’ 2๐‘ฅ 2 2 + 4๐‘ฅ 3 2 + 2๐‘ฅ 1 ๐‘ฅ 2 โˆ’ 6๐‘ฅ 1 ๐‘ฅ 3 + 6๐‘ฅ 2 ๐‘ฅ 3. Soln. Matrix of the quadratic form is ๐‘๐‘œ โˆ’ ๐‘’๐‘“๐‘“ ๐‘ฅ 1 2 ๐‘๐‘œ โˆ’ ๐‘’๐‘“๐‘“ ๐‘ฅ 1 ๐‘ฅ 2 ๐‘๐‘œ โˆ’ ๐‘’๐‘“๐‘“ ๐‘ฅ 1 ๐‘ฅ 3 ๐‘„ = ๐‘๐‘œ โˆ’ ๐‘’๐‘“๐‘“ ๐‘ฅ 2 ๐‘ฅ 1 ๐‘๐‘œ โˆ’ ๐‘’๐‘“๐‘“ ๐‘ฅ 2 2 ๐‘๐‘œ โˆ’ ๐‘’๐‘“๐‘“ ๐‘ฅ 2 ๐‘ฅ 3 2 (2) (โˆ’6) 2 1 โˆ’ 1 [ ๐‘๐‘œ โˆ’ ๐‘’๐‘“๐‘“ ๐‘ฅ 3 ๐‘ฅ 1 ๐‘๐‘œ โˆ’ ๐‘’๐‘“๐‘“ ๐‘ฅ 3 ๐‘ฅ 2 ๐‘๐‘œ โˆ’ ๐‘’๐‘“๐‘“ ๐‘ฅ 3 ]

(6) = [ 1 โˆ’2 3 ].

[(โˆ’6)(6)^4 ]

Nature of a Quadratic Form. Let ๐‘„ = ๐‘‹โ€ฒ๐ด๐‘‹ be a quadratic form in a variables x 1 , x 2 , โ€ฆ โ€ฆ โ€ฆ xn. A real quadratic form ๐‘‹โ€ฒ๐ด๐‘‹ in a variable is said to be (i) Positive definite if all the Eigenvalues of A. (ii) negative definite if all the Eigenvalues of A. (iii) Positive semidefinite if all the Eigenvalues of A and at least one Eigenvalue=0. (iv) Negative semidefinite if all the Eigenvalues of A and at least one Eigenvalue=0. (v) Indefinite if some of the Eigenvalues of A are positive and others negative.

  1. Reduce the quadratic form 6๐‘ฅ^2 + 3๐‘ฆ^2 + 3๐‘ง^2 โˆ’ 4๐‘ฅ๐‘ฆ โˆ’ 2๐‘ฆ๐‘ง + 4๐‘ง๐‘ฅ into canonical form by an orthogonal transformation. Also discuss its nature. Soln. Given 6๐‘ฅ 2
  • 3๐‘ฆ 2
  • 3๐‘ง 2 โˆ’ 4๐‘ฅ๐‘ฆ โˆ’ 2๐‘ฆ๐‘ง + 4๐‘ง๐‘ฅ The matrix of the quadratic form is ๐‘๐‘œ โˆ’ ๐‘’๐‘“๐‘“ ๐‘ฅ 2 ๐‘๐‘œ โˆ’ ๐‘’๐‘“๐‘“ ๐‘ฅ๐‘ฆ ๐‘๐‘œ โˆ’ ๐‘’๐‘“๐‘“ ๐‘ฅ๐‘ง 6 โˆ’2 2 ๐ด = ๐‘๐‘œ โˆ’ ๐‘’๐‘“๐‘“ ๐‘ฆ๐‘ฅ ๐‘๐‘œ โˆ’ ๐‘’๐‘“๐‘“ ๐‘ฆ 2 ๐‘๐‘œ โˆ’ ๐‘’๐‘“๐‘“ ๐‘ฆ๐‘ง = [โˆ’2 3 โˆ’1] 2 โˆ’1 3 ๐‘๐‘œ โˆ’ ๐‘’๐‘“๐‘“ ๐‘ง 2 ] [๐‘๐‘œ โˆ’ ๐‘’๐‘“๐‘“ ๐‘ง๐‘ฅ๐‘๐‘œ โˆ’ ๐‘’๐‘“๐‘“ ๐‘ง๐‘ฆ The characteristic equation of A is ๐œ† 3 โˆ’ ๐‘  1 ๐œ† 2 + ๐‘  2 ๐œ† โˆ’ ๐‘  3 = 0. 2 1