Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Mechanical Pendulums: Dynamics and Energy Analysis, Schemes and Mind Maps of Physics

A comprehensive overview of the fundamental concepts and equations governing the dynamics of mechanical pendulums. It covers the key aspects of pendulum motion, including the mathematical descriptions of the displacement, angular displacement, and the associated forces and moments. The document delves into the derivation of the differential equations of motion for various types of pendulums, such as the simple pendulum, the torsional pendulum, and the mass-spring pendulum. Additionally, it explores the concepts of potential and kinetic energy, as well as the work done by the restoring forces and the weight of the pendulum. This information is crucial for understanding the behavior and applications of mechanical pendulums in fields like physics, engineering, and applied mechanics.

Typology: Schemes and Mind Maps

2019/2020

Uploaded on 03/30/2024

marwa-wahbi-1
marwa-wahbi-1 🇺🇸

1 document

1 / 1

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Pendules mécaniques
Pendule
Elastique
De torsion
simple
pesant
Abscisse
Coordonnée cartésienne
x
Abscisse angulaire
θ
Abscisse angulaire
θ
Abscisse angulaire
θ
Inertie
La masse
m
Le moment d’inertie
J= 𝟏𝟏 𝒎𝒎l2
𝟏𝟏𝟏𝟏
Le moment d’inertie
J=m.l2
Le moment d’inertie
J=𝟏𝟏 𝒎𝒎l2
𝟑𝟑
Force de
rappel
Tension du ressort :
Fx = - K.x
Moment de torsion
MC = -
Moment de poids
𝐌𝐌
(
𝐏𝐏
)
= -m.gdsinθ
Moment de poids
𝐌𝐌
(
𝐏𝐏

)
= -m.gdsinθ
Equation
différentiell
e
𝒙𝒙𝒙 + 𝑲𝑲 𝒙𝒙 = 𝟎𝟎
𝒎𝒎 𝜽𝜽𝒙 + 𝑪𝑪 𝜽𝜽 = 𝟎𝟎
𝑱𝑱
𝜽𝜽𝒙 + 𝒈𝒈 𝜽𝜽 = 𝟎𝟎
𝒍𝒍 𝜽𝜽𝒙 + 𝒎𝒎𝒈𝒈𝒎𝒎 𝜽𝜽 = 𝟎𝟎
𝑱𝑱
Equation
horaire
x = Xmcos 0t + φ) θ(t) = θmcos(𝟏𝟏𝟐𝟐 𝒕𝒕 + 𝝋𝝋)
𝑻𝑻𝟎𝟎
(t) = θmcos(𝟏𝟏𝟐𝟐 𝒕𝒕 + 𝝋𝝋)
𝑻𝑻𝟎𝟎
(t) = θmcos(𝟏𝟏𝟐𝟐 𝒕𝒕 + 𝝋𝝋)
𝑻𝑻𝟎𝟎
La période
T0
𝒎𝒎
𝑲𝑲
𝑱𝑱
𝑪𝑪
𝒍𝒍
𝒈𝒈
𝑱𝑱
𝒎𝒎𝒈𝒈𝒎𝒎
Travail de
la force de
rappel
W(
𝐹𝐹
) =
1
.
K
.(𝑥𝑥
2
𝑥𝑥
2
)
2 𝑖𝑖 𝑓𝑓
W(MC) = 1.C.(𝜃𝜃2 𝜃𝜃2)
2 𝑖𝑖 𝑓𝑓
W(𝑃𝑃
)= m.g.l.(cosθi -
cosθ
f
)
W(𝑃𝑃
) = -m.g.
𝑙𝑙
.( cosθi -
2
cosθ
f
)
Energie
potentielle
Epe = 1.K.x2 + C
2
ΔEpe = -W(𝐹𝐹 )
Ept = 1.C.θ2 + C
2
ΔEpt = -W(MC)
Epp= m.g.l.(1-cosθ)
+ C
ΔE
pp
= -W(𝑃𝑃
)
Epp= m.g.𝑙𝑙.(1-cosθ)
2
+ C
ΔE
pp
= -W(𝑃𝑃
)
Energie
cinétique
Ec = 1.m.v2
2
Ec = 1.JΔ2
2
Ec = 1.JΔ2
2
Ec = 1.JΔ2
2

Partial preview of the text

Download Mechanical Pendulums: Dynamics and Energy Analysis and more Schemes and Mind Maps Physics in PDF only on Docsity!

Pendules mécaniques

Pendule

Elastique De torsion simple pesant

Abscisse

Coordonnée cartésienne x

Abscisse angulaire θ

Abscisse angulaire θ

Abscisse angulaire θ Inertie La masse m

Le moment d’inertie J∆= 𝟏𝟏 𝒎𝒎 l 2 𝟏𝟏𝟏𝟏

Le moment d’inertie J∆=m.l 2

Le moment d’inertie J∆= 𝟏𝟏 𝒎𝒎 l 2 𝟑𝟑 Force de rappel

Tension du ressort : Fx = - K.x

Moment de torsion MC = -Cθ

Moment de poids 𝐌𝐌∆(𝐏𝐏⃗⃗) = -m.gdsinθ

Moment de poids 𝐌𝐌∆(𝐏𝐏⃗⃗ ) = -m.gdsinθ

Equation différentiell e

𝒙𝒙𝒙 + 𝑲𝑲 𝒙𝒙 = 𝟎𝟎 𝒎𝒎 𝜽𝜽𝒙^ +^

𝑪𝑪 𝜽𝜽 = 𝟎𝟎 𝑱𝑱 (^) ∆

𝜽𝜽𝒙 +

𝒈𝒈 𝜽𝜽 = 𝟎𝟎 𝒍𝒍

𝜽𝜽𝒙 +

𝒎𝒎𝒈𝒈𝒎𝒎 𝜽𝜽 = 𝟎𝟎 𝑱𝑱 (^) ∆

Equation horaire

x = Xmcos (ω 0 t + φ) θ(t) = θmcos( 𝟏𝟏𝟐𝟐 𝒕𝒕 + 𝝋𝝋) 𝑻𝑻 (^) 𝟎𝟎

(t) = θmcos( 𝟏𝟏𝟐𝟐 𝒕𝒕 + 𝝋𝝋) 𝑻𝑻 (^) 𝟎𝟎

(t) = θmcos( 𝟏𝟏𝟐𝟐 𝒕𝒕 + 𝝋𝝋) 𝑻𝑻 (^) 𝟎𝟎

La période T 0

√ 𝒎𝒎 𝑲𝑲

√ 𝑱𝑱 (^) ∆ 𝑪𝑪

√ 𝒍𝒍 𝒈𝒈

√ 𝑱𝑱∆ 𝒎𝒎𝒈𝒈𝒎𝒎

Travail de la force de rappel

W(𝐹𝐹) = 1. K.(𝑥𝑥^2 − 𝑥𝑥^2 )

2 𝑖𝑖^ 𝑓𝑓

W( M C ) =

1 .C.(𝜃𝜃^2 − 𝜃𝜃^2 ) 2 𝑖𝑖^ 𝑓𝑓^

W(𝑃𝑃⃗ )= m.g.l.(cosθi - cosθf)

W(𝑃𝑃⃗ ) = -m.g.𝑙𝑙^ .( cosθi - 2 cosθf)

Energie potentielle

Epe = 1 .K.x^2 + C 2 ΔEpe = -W(𝐹𝐹 )

Ept = 1 .C.θ^2 + C 2 ΔEpt = -W( M C )

Epp = m.g.l.(1-cosθ)

  • C ΔE (^) pp = -W(𝑃𝑃⃗ )

Epp = m.g.𝑙𝑙.(1-cosθ) 2

  • C ΔE (^) pp = -W(𝑃𝑃⃗ )

Energie cinétique

Ec = 1 2 .m.v 2 Ec^ =^

1 2 .J Δ^ .ω^2 Ec^ =^

1 2 .J Δ^ .ω^2 Ec^ =^

1 2 .JΔ^ .ω^2