
Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
Formula sheet include vectors principles, kinematics, constant acceleration kinematics, dynamic friction and gravity, momentum of interia and waves.
Typology: Cheat Sheet
1 / 1
This page cannot be seen from the preview
Don't miss anything!
g =
E
2
E
m
s
2
kg
E
6
m ; M E
24
kg ; G = 6. 67 × 10
− 11
N · m
2
/kg
2
Vector Principles
x
i + A y
j + A z
k ⇒ (A x
y
z
final
initial
; ~a ·
b = ab cos θ ; |~a ×
b| = ab sin θ
Kinematics
~r = x
i + y
j ; ~v ≡
d~r
dt
; ~a ≡
d~v
dt
d
2
~r
dt
2
; x(t) = x 0
t
0
v(t
′
)dt
′
; v(t) = v 0
t
0
a(t
′
)dt
′
; ~v av
∆~r
∆t
; ~a av
∆~v
∆t
Constant Acceleration Kinematics
~v = ~v 0
~at ; ~r = ~r 0
~v 0
t +
~at
2
; ~r = ~r 0
(~v 0
2 a
(v
2
− v
2
0
Rotational Kinematics
θ ≡
s
r
; ω ≡
dθ
dt
; α ≡
dω
dt
d
2
θ
dt
2
; v t
ds
dt
= ωr ; a t
d
2
s
dt
2
= αr ; ω av
∆θ
∆t
; α av
∆ω
∆t
Uniform Circular Motion
a cent
= a r
v
2
r
= ω
2
r ; T =
2 πr
v
Simple Harmonic Motion
x(t) = A cos(ωt + δ) ; f =
; ω = 2πf ; T mass−spring
= 2π
m
k
pend
= 2π
g
phys−pend
= 2π
mgD
Dynamics, Friction & Gravity
net
m
= ~a ;
AB
BA ; |f s | ≤ μ s N ; |f k | = μ k
spring
= −kx ;
grav
ab
Gm a
m b
r
2
ab
r ˆ ab
grav
earth,m
= w = gm
Work, Energy & Momentum
by
~ F
F · d~s =
x dx +
y dy +
z dz ; K =
mv
2
; ∆U = −W BCF
int,cons
dU
dx
g
GM m
r
g = mgy ; U sp
kx
2
; W ext
sys
g
sp
chem
therm ; f ∆s = ∆E therm
dW
dt
F · ~v ; v 2 f
− v 1 f
= −(v 2 i
− v 1 i
) ; ~p = m~v ;
F dt = ∆p~ ;
ext
d
dt
Systems of Particles
~r cm
tot
m i
~r i
; ~r cm
~rdm
dm
Rotational Dynamics
m i
r
2
i
r
2
dm ; I p
cm
2
; K =
Iω
2
; W rot
τ dθ = ∆K rot
dW
dt
= τ ω ;
L = ~r × ~p
~τ = ~r ×
F ; τ = r ⊥
~τ = I~α ;
~τ =
d
dt
; v cm
= rω ; a cm
= rα ;
L = I~ω
Moments of Inertia
cylindrical shell: I cm
2 ; disk: I cm
2 ; rod: I cm
2 ;
solid sphere: I cm
2 ; hollow sphere: I cm
2
Waves
y(x, t) = A sin(kx − ωt) ; ω = 2πf =
2 π
; k =
2 π
λ
2
y
∂x
2
v
2
2
y
∂t
2
; v wave = f λ =
ω
k
; v wave on string
μ
v air
γP
ρ
γRT
; v solid
ρ
av
μω
2
A
2
v ; I av
av
4 πr
2
β = (10dB) log 10
0
0
− 12
m
2
; y sw = A sin(kx) cos(ωt) ; ∆L const = mλ ; ∆L dest
m +
λ
A sin θ 1
θ 1
− θ 2
sin
θ 1
; A sin θ 1 − A sin θ 2 = 2A cos
θ 1
sin
θ 1
− θ 2