Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Mechanics formula sheet, Cheat Sheet of Mechanical Engineering

Formula sheet include vectors principles, kinematics, constant acceleration kinematics, dynamic friction and gravity, momentum of interia and waves.

Typology: Cheat Sheet

2021/2022

Uploaded on 02/07/2022

hardcover
hardcover 🇺🇸

4.7

(7)

259 documents

1 / 1

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Introductory Mechanics Formulas
g=GME
R2
E
= 9.81 m
s2= 9.81 N
kg ;RE= 6.4×106m ; ME= 6.0×1024kg ; G= 6.67 ×1011 N·m2/kg2
Vector Principles
~
A=Axˆ
i+Ayˆ
j+Azˆ
k(Ax, Ay, Az) ; ~
A~
Afinal ~
Ainitial ;~a ·~
b=ab cos θ;|~a ×~
b|=ab sin θ
Kinematics
~r =xˆ
i+yˆ
j;~v d~r
dt ;~a d~v
dt =d2~r
dt2;x(t) = x0+Zt
0
v(t0)dt0;v(t) = v0+Zt
0
a(t0)dt0;~vav ~r
t;~aav ~v
t
Constant Acceleration Kinematics
~v =~v0+~at ;~r =~r0+~v0t+1
2~at2;~r =~r0+1
2(~v0+~v)t;x=x0+1
2a(v2v2
0)
Rotational Kinematics
θs
r;ω
dt ;α
dt =d2θ
dt2;vt=ds
dt =ωr ;at=d2s
dt2=αr ;ωav θ
t;αav ω
t
Uniform Circular Motion
acent =ar=v2
r=ω2r;T=2πr
v
Simple Harmonic Motion
x(t) = Acos(ωt +δ) ; f=1
T;ω= 2πf ;Tmassspring = 2πrm
k;Tpend = 2πsL
g;Tphyspend = 2πsI
mgD
Dynamics, Friction & Gravity
~
Fnet
m=~a ;~
FAB =~
FBA ;|fs| µsN;|fk|=µkN;Fspring =kx ;~
Fgrav
ab =Gmamb
r2
ab
ˆrab ;Fgrav
earth,m=w=gm
Work, Energy & Momentum
Wby~
F=Z~
F·d~s =ZFxdx +ZFydy +ZFzdz ;K=1
2mv2; U=WBCF ;Fint,cons =dU
dx
Ug=GMm
r;Ug=mgy ;Usp =1
2kx2;Wext = Esys = K+ Ug+ Usp + Echem + Etherm ;fs= Etherm
PdW
dt =~
F·~v ;v2fv1f=(v2iv1i) ; ~p =m~v ;~
I=Z~
F dt = ~p ;XFext =d~
P
dt
Systems of Particles
~rcm =1
Mtot Xmi~ri;~rcm =R~rdm
Rdm
Rotational Dynamics
I=Xmir2
i;I=Zr2dm ;Ip=Icm +Mh2;K=1
22;Wrot =Zτ = Krot ;P=dW
dt =τω ;~
L=~r ×~p
~τ =~r ×~
F;τ=rF;X~τ =I ~α ;X~τ =d~
L
dt ;vcm = ;acm = ;~
L=I~ω
Moments of Inertia
cylindrical shell: Icm =MR2; disk: Icm = (1/2)MR2; rod: Icm = (1/12)ML2;
solid sphere: Icm = (2/5)MR2; hollow sphere: Icm = (2/3)MR2
Waves
y(x, t) = Asin(kx ωt) ; ω= 2πf =2π
T;k=2π
λ;2y
∂x2=1
v2
2y
∂t2;vwave = =ω
k;vwave on string =sF
µ
vair =sγP
ρ=rγRT
M;vsolid =sB
ρ;Pav =1
2µω2A2v;Iav =Pav
4πr2;
β= (10dB) log10 I
I0;I0= 1012 W
m2;ysw =Asin(kx) cos(ωt) ; Lconst = ; Ldest =m+1
2λ
Asin θ1+Asin θ2= 2Acos θ1θ2
2sin θ1+θ2
2;Asin θ1Asin θ2= 2Acos θ1+θ2
2sin θ1θ2
2

Partial preview of the text

Download Mechanics formula sheet and more Cheat Sheet Mechanical Engineering in PDF only on Docsity!

Introductory Mechanics Formulas

g =

GM

E

R

2

E

m

s

2

N

kg

; R

E

= 6. 4 × 10

6

m ; M E

= 6. 0 × 10

24

kg ; G = 6. 67 × 10

− 11

N · m

2

/kg

2

Vector Principles

A = A

x

i + A y

j + A z

k ⇒ (A x

, A

y

, A

z

A ≡

A

final

A

initial

; ~a ·

b = ab cos θ ; |~a ×

b| = ab sin θ

Kinematics

~r = x

i + y

j ; ~v ≡

d~r

dt

; ~a ≡

d~v

dt

d

2

~r

dt

2

; x(t) = x 0

t

0

v(t

)dt

; v(t) = v 0

t

0

a(t

)dt

; ~v av

∆~r

∆t

; ~a av

∆~v

∆t

Constant Acceleration Kinematics

~v = ~v 0

  • ~at ; ~r = ~r 0

  • ~v 0

t +

~at

2

; ~r = ~r 0

(~v 0

  • ~v)t ; x = x 0

2 a

(v

2

− v

2

0

Rotational Kinematics

θ ≡

s

r

; ω ≡

dt

; α ≡

dt

d

2

θ

dt

2

; v t

ds

dt

= ωr ; a t

d

2

s

dt

2

= αr ; ω av

∆θ

∆t

; α av

∆ω

∆t

Uniform Circular Motion

a cent

= a r

v

2

r

= ω

2

r ; T =

2 πr

v

Simple Harmonic Motion

x(t) = A cos(ωt + δ) ; f =

T

; ω = 2πf ; T mass−spring

= 2π

m

k

; T

pend

= 2π

L

g

; T

phys−pend

= 2π

I

mgD

Dynamics, Friction & Gravity

F

net

m

= ~a ;

F

AB

F

BA ; |f s | ≤ μ s N ; |f k | = μ k

N ; F

spring

= −kx ;

F

grav

ab

Gm a

m b

r

2

ab

r ˆ ab

; F

grav

earth,m

= w = gm

Work, Energy & Momentum

W

by

~ F

F · d~s =

F

x dx +

F

y dy +

F

z dz ; K =

mv

2

; ∆U = −W BCF

; F

int,cons

dU

dx

U

g

GM m

r

; U

g = mgy ; U sp

kx

2

; W ext

= ∆E

sys

= ∆K + ∆U

g

+ ∆U

sp

+ ∆E

chem

+ ∆E

therm ; f ∆s = ∆E therm

P ≡

dW

dt

F · ~v ; v 2 f

− v 1 f

= −(v 2 i

− v 1 i

) ; ~p = m~v ;

I =

F dt = ∆p~ ;

F

ext

d

P

dt

Systems of Particles

~r cm

M

tot

m i

~r i

; ~r cm

~rdm

dm

Rotational Dynamics

I =

m i

r

2

i

; I =

r

2

dm ; I p

= I

cm

  • M h

2

; K =

2

; W rot

τ dθ = ∆K rot

; P =

dW

dt

= τ ω ;

L = ~r × ~p

~τ = ~r ×

F ; τ = r ⊥

F ;

~τ = I~α ;

~τ =

d

L

dt

; v cm

= rω ; a cm

= rα ;

L = I~ω

Moments of Inertia

cylindrical shell: I cm

= M R

2 ; disk: I cm

= (1/2)M R

2 ; rod: I cm

= (1/12)M L

2 ;

solid sphere: I cm

= (2/5)M R

2 ; hollow sphere: I cm

= (2/3)M R

2

Waves

y(x, t) = A sin(kx − ωt) ; ω = 2πf =

2 π

T

; k =

2 π

λ

2

y

∂x

2

v

2

2

y

∂t

2

; v wave = f λ =

ω

k

; v wave on string

F

μ

v air

γP

ρ

γRT

M

; v solid

B

ρ

; P

av

μω

2

A

2

v ; I av

P

av

4 πr

2

β = (10dB) log 10

I

I

0

; I

0

− 12

W

m

2

; y sw = A sin(kx) cos(ωt) ; ∆L const = mλ ; ∆L dest

m +

λ

A sin θ 1

  • A sin θ 2 = 2A cos

θ 1

− θ 2

sin

θ 1

  • θ 2

; A sin θ 1 − A sin θ 2 = 2A cos

θ 1

  • θ 2

sin

θ 1

− θ 2