




Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
Material Type: Exam; Professor: Brogan; Subject: Computer Science; University: University of Virginia; Term: Fall 2000;
Typology: Exams
1 / 8
This page cannot be seen from the preview
Don't miss anything!
CS 5 5 1 /6 4 5 : In tro d u c tio n to Co m p u te r G ra p h ic s Mid te r m E x a m in a tio n O c to b e r 1 9 , 2 0 0 0
N a m e :_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
H o n o r P le d g e : T h is is a c lo s e d -b o o k , c lo s e d -n o te s , in d e p e n d e n t e x a m. P le a s e s ig n th e h o n o r p le d g e : O n m y h o n o r a s a s tu d e n t, I h a v e n e ith e r g iv e n n o r re c e iv e d in fo rm a tio n o n th is e x a m. S ig n e d , _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
D is p la y T e c h n o lo g y
1 ) W h a t is a s c a n lin e?
2 ) F ra m e b u ffe rs a re d e s c rib e d a s h a v in g a c e rta in d e p th. T o w h a t d o e s th e d e p th re fe r?
3 ) W h a t is s to re d in th e fra m e b u ffe r w h e n a c o lo r m a p lo o k u p ta b le is u s e d?
4 ) W h a t is a s h a d o w m a s k?
Ma th e m a tic a l F o u n d a tio n s
5 ) G iv e n tw o p o in ts , (a , b ) a n d (c , d ), p ro v id e th e fo llo w in g e q u a tio n s o f a lin e :
S lo p e -in te rc e p t:
P a ra m e tric :
6 ) P ro v id e a g e o m e tric (u s e a p ic tu re ) a n d a n a lg e b ra ic d e fin itio n o f th e d o t p ro d u c t o f tw o v e c to rs , [u (^) x , u (^) y , u (^) z ] a n d [v (^) x , v (^) y , v (^) z ]
7 ) W h a t is a n o rth o n o rm a l m a trix?
8 ) Co m p u te th e in v e rs e o f th e fo llo w in g o rth o n o rm a l m a trix :
O p e n G L
9 ) U s e g lP u s h M a trix (), g lP o p M a trix (), g lR o ta te f(), g lT ra n s la te f (), a n d g lW ire Cu b e () to d ra w th e h o u r m a rk s o n th e fa c e o f a c lo c k. T h e h o u r m a rk s s h o u ld lo o k b e u n it c u b e s o f s iz e 1 .0 a n d th e ir c e n te rs s h o u ld b e 3 .0 u n its fro m th e c e n te r.
1 0 ) G iv e n a v a ria b le , v : F lo a t v [3 ]; v [0 ] = 1 .0 ; v [1 ] = 0 .0 ; v [2 ] = 0 .0 ;
Co m p le te th e fo llo w in g tw o G L fu n c tio n s th a t w ill u s e v a s a p a ra m e te r:
g lV e c to r3 f(_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ); g lV e c to r3 fv (_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ );
1 2 ) O n e tria n g le ra s te riz a tio n te c h n iq u e is c a lle d Ed g e Eq u a tio n s. L is t th re e o p tim iz a tio n s im p le m e n te d in th e fo llo w in g tw o c o d e s e g m e n ts :
findBoundingBox(&xmin, &xmax, &ymin, &ymax); setupEdges (&a0,&b0,&c0,&a1,&b1,&c1,&a2,&b2,&c2);
for (int y = yMin; y <= yMax; y++) { for (int x = xMin; x <= xMax; x++) { float e0 = a0x + b0y + c0; float e1 = a1x + b1y + c1; float e2 = a2x + b2y + c2; if (e0 > 0 && e1 > 0 && e2 > 0) setPixel(x,y); } }**
findBoundingBox(&xmin, &xmax, &ymin, &ymax); setupEdges (&a0,&b0,&c0,&a1,&b1,&c1,&a2,&b2,&c2); float e0 = a0x + b0y + c0; float e1 = a1x + b1y + c1; float e2 = a2x + b2y + c2; int xflag = 0; for (int x = xMin; x <= xMax; x++) { if (e0|e1|e2 > 0) { setPixel(x,y); xflag++; } else if (xflag != 0) break; e0 += a0; e1 += a1; e2 += a2; }**
1 3 ) W h a t is a n A c tiv e Ed g e T a b le , a n d h o w is it u s e d in g e n e ra l p o ly g o n ra s te riz a tio n?
C lip p in g
1 4 ) W h e n u s in g th e Co h e n -S u th e rla n d lin e c lip p in g a lg o rith m , h o w d o w e c h e c k th e o p c o d e s to s e e if a lin e c a n b e triv ia lly a c c e p te d o r re je c te d?
1 5 ) W h e n is it a d v a n ta g e o u s to u s e th e Co h e n -S u th e rla n d lin e c lip p in g a lg o rith m in s te a d o f th e Cy ru s -B e c k c lip p in g a lg o rith m?
G e o m e tr ic T r a n s fo r m a tio n s
1 6 ) W h y d o w e u s e a 4 x 4 h o m o g e n o u s c o o rd in a te tra n s fo rm a tio n m a trix w h e n d e s c rib in g tra n s la tio n s , ro ta tio n s , a n d s c a le s , e tc .?
1 8 ) P ro v id e a 3 x 3 m a trix th a t w ill c o m p u te th e n e w v e rtic e s o f a p la n a r h o u s e c e n te re d a t [1 0 , 5 ] a fte r a ro ta tio n o f 9 0 d e g re e s a b o u t its c e n te r:
2 1 ) Ca lc u la te y ’ in th e fo llo w in g fig u re
2 2 ) T h e 4 x 4 p e rs p e c tiv e p ro je c tio n m a trix , Mp e r , c o n v e rts p o in ts fro m th e c a m e ra c o o rd in a te s y s te m to th e v ie w p la n e c o o rd in a te s y s te m. It p e rfo rm s th e c a lc u la tio n fro m th e p re v io u s q u e s tio n. W h a t is th e 4 x 4 m a trix , Mp e r?
C o lo r a n d L ig h t
2 3 ) W h a t is th e n a m e o f th e re g io n o f th e re tin a w h e re o u r v is io n is th e s h a rp e s t?
2 4 ) W h a t c o lo r a re w e th e le a s t s e n s itiv e to? R e d , G re e n , o r B lu e
2 5 ) W h y d o m o n ito rs n e e d to p e rfo rm g a m m a c o rre c tio n?
2 6 ) If y o u w e re a n a rtis t, try in g to c a re fu lly c o lo r p o ly g o n s b y h a n d , w h ic h c o lo r s p a c e w o u ld y o u p re fe r to w o rk in , R G B o r H S V? W h y?
2 7 ) G iv e n : a n in c o m in g lig h t in te n s ity , I a s u rfa c e n o rm a l, N a v e c to r fro m th e s u rfa c e to th e lig h t s o u rc e , L a v e c to r fro m th e s u rfa c e to th e v ie w e r’s e y e , V s p e c u la r c o n s ta n t, k (^) s d e fin e th e in te n s ity o f th e lig h t re a c h in g th e v ie w e r a s a re s u lt o f th e s p e c u la r e ffe c ts o f th e P h o n g lig h tin g e q u a tio n. Y o u r d e fin itio n m a y o n ly u s e th e s e v a ria b le s.
2 8 ) B o th G o u ra u d a n d P h o n g S h a d in g in te rp o la te a lo n g p o ly g o n e d g e s to c o m p u te in te n s itie s. B u t th e tw o s h a d in g m o d e ls in te rp o la te d iffe re n t th in g s.
a ) W h a t d o e s G o u ra u d S h a d in g in te rp o la te a lo n g e d g e s?
b ) W h a t d o e s P h o n g S h a d in g in te rp o la te a lo n g e d g e s?
2 9 ) T ru e o r F a ls e? R a y tra c in g p ro d u c e s v ie w e r-in d e p e n d e n t lig h tin g s o lu tio n s.
3 0 ) T ru e o r F a ls e? R a d io s ity p ro d u c e s a c c u ra te s p e c u la r h ig h lig h ts
3 1 ) (E x tra Cre d it) W h o is c re d ite d w ith in v e n tin g T h e R e n d e r in g E q u a tio n?