Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

optical properties tythj hjhhjhj hjhjhjh hjhjhj jhjhjhjh jhjhj, Summaries of Laser Physics & Quantum Optics

optical properties jhjhjhjh hjh jh jh j hjhjhj

Typology: Summaries

2017/2018

Uploaded on 02/20/2018

yudanta-ramadhona
yudanta-ramadhona 🇮🇩

1 document

1 / 34

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
AppendixA
_________
_
Optical
Properties
of
Common
Rock-Forming
Minerals
325
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17
pf18
pf19
pf1a
pf1b
pf1c
pf1d
pf1e
pf1f
pf20
pf21
pf22

Partial preview of the text

Download optical properties tythj hjhhjhj hjhjhjh hjhjhj jhjhjhjh jhjhj and more Summaries Laser Physics & Quantum Optics in PDF only on Docsity!

AppendixA _________ _

Optical Properties of Common

Rock-Forming Minerals

Optical

Properties

of

Common

Rock-Forming

Minerals

J.

B.
Lyons,
S.
A.
Morse, and
R.
E.
Stoiber

Distinguishing Characteristics

Chemical

XI.

System

and

Indices

Birefringence

"Characteristically parallel,

but

Mineral

Composition

Best

Cleavage

Sign,2V

and

Relief

and

Color

see

Fig.

A.

High Positive Relief

Zircon

ZrSiO.

Tet.

High

biref.

Small euhedral grains

show

parallel" extinction;

may

cause

pleochroic haloes if

enclosed

in

other minerals

Sphene

CaTiSiO

s^

Mon.

High

biref.

Wedge-shaped grains;

may

(Titanite)

to

show

cleavage or

Often

or

parting; ZI\c=

brownish

in

very

high

relief;

r>v

extreme.

color

CtJ I)

Gamet

A

B2(SiO.las

where

Iso.

High

Grandite

often

Very

pale

pink commonest

A =
R2+

and

B = R
S^ +

weakly

color; inclusions

common.

birefracting.

Indices vary widely

with

composition. Crystals

often

euhedraL

Uvarovite

green,

very

rare.

Staurolite

H

FeAI.Si

O'2 2

Orth.

2V

Low

biref.

Pleochroic colorless

to

golden

(approximately)

yellow;

one

good

cleavage;

twins cruciform or oblique;metamorphic.

Olivine Series

Mg

SiO.^2

Orth.

2V=

High

biref.

Colorless

(Fo)

to

yellow

or

pale

to

to

brown

(Fa);

high

relief.

Fe

SiO. 2

Orth.

2V=

High

biref.

Shagreen

(mottled) surface;

l~

often

cracked

and

altered

to

%II

-

serpentine. Poor

and

cleavages. Extinction

par-

alleL"

Chemical

XI.

System and

Indices

Birefringence

Mineral

Composition

Best Cleavage

Sign,2V

and Relief

and Color

Distinguishing Characteristics

Chloritoid

H2FeAI

Si

7

Mon. (110)

)^

Low

Pleochroic in greenish-black to

2V

gray. Epidote has better cleav-age. X parallel to (010) parting.

Zoisite

HCa2A13Si30'

Orth. (010)

Low (.006)

Abnormal blue interference

2V =

ors; one cleavage; parallel" ex-

r<v

tinction; colorless.

Epidote

H(CaFe)2AI3Si30'

Mon. (001)

2V = 75

High (.033-to

Abnormal interference colors;

Zl\cleavage=

14°-24°;weakly

pleochroic in pistachio greens;usually in fine aggregates.

Kyanite

AI

2 Si

5

Tri.

2V = 83

Low (.012)

High relief; 2 good cleavages,

w

best is (100);

Zl\c=300;

alters

I:)

to sericite; nice colorless

co

blades.

Pyroxene

93-8r

Cleavage characteristic;

cf.

am-

phibole.

Enstatite

MgSi

Orth. (210)

(+)2V=

Low biref.

Parallel" extinction. Colorless.

Hypersthene

(MgFe)Si

Orth. (210)

2V = 75

Low biref.

Parallel" extinction; faint pink

to green pleochroism dis-tinctive.

Pigeonite

(MgFe)Si03 +

CaSi

Mon. (110)

2V =

Low biref.

Colorless;

Zl\c=22°-45°;

low

2V diagnostic.

Diopside

CaMgSi

s

Mon. (110)

2V = 60

Mod. biref.

Zl\c=38°;

colorless; pure form

common chiefly

in

contact

metamorphic rocks.

Continued

(Pyroxene,

cont.)

Augite

Ca(MgFe)Si

O.^2

Mon.

2V

Mod.

biref.

Zl\c=48°-54°;

may

twin

on

or

light colored

in

thin

section,

but

reddish

or

vio-

let

when

n

is

abundant.

Aegirinaugite

Ca(MgFe)Si

Mon.

2V

Mod.

biref.

Zl\c=65°-75°;

pleochroic

in

NaFeSi

O. 2

Green

greens;

may

show

inclined

dis-

persion;

common

in

alkalic

rocks.

Apatite

Ca

(F,CI)(P0s

la 4

Hex.

Low

Small

hexagonal

prisms;

sha-

green surface; colorless.

Small

inclusions

common.

Andalusite

AI

SiO 2

s^

Orth.

2V

Low

Faint pink pleochroism;

X=c;

carbonaceous inclusions;

al-

ters to sericite.

Ul

B.

Intermediate Positive Relief

N

Perfect basal cleavage

co

Micas

Muscovite

KAI

[AISi 2

1O,o(OH)2 3

Mon.

2V

High

biref.

High

index

parallels

cleavage;

colorless.

Sericite

Fine

grained muscovite.

Biotite

K(Mg,

Fe),(AISi

10,o(OH)2 3

Mon.

2V

High

biref.

Pleochroic;

max.

absorption

o

Green,

brown

and

high

index parallel

cleav-

age;

pleochroic haloes

around

inclusions; green

ferric,

brown

titanian.

Paragonite

NaAI

2 [AISi

3 1O,o(OH)

Mon.

Na

analog

of

muscovite,

with

which

it

may

be

intergrown

in

schists; X-ray or

probe

needed

to

identify.

Chlorite

(Mg,AI,FeMAI,SiI

0,o(OH)e 4

Mon.

or

Very

low

B;

Perf.

cleavage;

may

small-zero

pleochroic

in

show

abnormal interference

greens

colors;

max.

absorption

paral-

lel

to

cleavage;

high

index

par-

allel or

normal

to cleavage.

Bytownite
An
-do-
2V=
Fine
lamellar exsolution
common.
Anorthite
CaAI
Si 2
An
-do-
2V=

~=1.

Metamorphic
and
arc
volcanic
Plagioclase
end
rocks.
member
Quartz
Si

2

Hex.

~=1.

Low
No
color,
cleavage,
or alter-
w=1.
ation.
Often
has
inclusions;
un-
dulatory extinction
common.
Nepheline
NaAISi

4

Hex.
w=1.536-
Low
Resembles
quartz,
but
sign
negative.
Told
from
orthoclase
by
higher
index
and
uniaxial
character; often altered
to
can-
crinite or sodalite
(blue).

CAl

Cordierite
Mg.A
Si 4
O,.s
Orth.
2V

~=1.

Low
Often
confused
with
quartz

but

CAl ....

biaxial;
also
may
show
inclu-
sions of sillimanite, yellow
pleo-
chroic
haloes,
and
characteris-
tic
twins.
Scapolite
Marialite
-Ab
NaCI
Tet.
w=1.539-
Alteration of
plagioclase,
Meionite
-An
CaC

3

often
zoned
mostly
contact-metamorphic.
int.
colors
Zoned
interference
colors
char-
acteristic.
D.
Moderate
Negative
Relief
Leucite
KAISi
O. 2
Iso.
n=1.
Generally weakly birefracting;inclusions
common;
trapezo-
hedral crystals.
Analcite
NaAISi
O.·H 2
O 2
Iso.
n=1.
Trapezohedral
form;
generally
lacks
inclusions.
Chemical
XI.
System
and
Indices
Birefringence
Mineral
Composition
Best
Cleavage
Sign,2V
and
Relief
and
Color
Distinguishing Characteristics
Calcite
CaC

3

Hex.
Extreme
biref.
Differential relief
on
rotation
of
E=1.
stage;
one
index
below
other
far
above;
rhombohedral
cleavage;
often
twinned;
told
from
other
rhombohedral
car-
bonates
only
by
index.
Cristobalite
Si
Tet.
Low
Often
looks
isotropic;
multiple
E=1.
twinning; generally
in
fibrous
balls
in
cavities;
negative

U)

relief.

U)I)

Tridymite
Si
Orth.
2V=
Low
Lath-shaped
forms;
negative
elongation;
wedge-shaped
grains; slight
pinkish
color;
neg-
ative
relief.
Zeolites
Complex
hydrous
Orth.
(^ +)
or
rarely
Low-Mod.
Generally
low
index,
weak
Na,Ca,AI
silicate
biref.;
rarely
colored;
often
fi-
brous.
See
tables for
more
data.
Fluorite
CaF
Iso.
n=1.
Often
in
euhedral
octahedra.
Common
accessory
in
some
granites.
'Characteristically parallel,
but
see
Fig.

334 Appendix^ B:^ Identification of Fibrous Asbestos

tion is the orange-red ("pylon") color described in Chapter 3 (see Fig.

3-15 or Fig. 17-3). Dispersion staining is used in many industriallabora-

tories to enhance the appearance of asbestos fibers and determine their

refractive index. If dispersion staining is used with central screening

(Chapter 3; McCrone, 1987; McCrone et a1. 1977), the color indicating

the condition of match is deep violet (Fleischer et aI., 1984, Table 1).

Other colors may be interpreted, according to the method used, by

reference to either of these figures or the table. Either method leads

to the correct result.

The two amphiboles have high refractive index, near 1.7, whereas

chrysotile has a moderate refractive index near 1.5; this distinction

provides a fundamental and rapid basis for identification. If the un-

known fiber sample is immersed in a liquid of n = 1.56 and shows low

relief or color fringes it cannot be one of the amphiboles. Conversely, if

the sample is immersed in a liquid of n = 1.7 any amphiboles present

will have low relief or show color fringes, whereas any chrysotile

present will have high negative relief.

The sign of the elongation is diagnostic between the amphiboles,

being positive in grunerite and negative in riebeckite (the terms length-

slow and length-fast, respectively, are also in common use). Birefrin-

gence, hence interference color, is also diagnostic, being much larger

in grunerite. The most spectacular diagnostic feature is the blue color

of riebeckite, easily recognized in fibers only a few micrometers thick.

The woolly material is pale blue to the naked eye, and unprocessed

fibers are dark blue.

The high refractive index along the length of grunerite is about

the same as the low refractive index along the length of riebeckite. A

1.698 oil is effective in seeking a color fringe to identify these minerals

because it is more stable than the common 1.7+ oils and hence needs

less frequent calibration.

The dispersion method affords a rapid means of establishing quan-

titatively the diagnostic refractive index of fibrous asbestos. It is used

according to the methods described in Chapter 16.

Values of the dispersion, n F - no were determined at the Univer-

sity of Massachusetts from standard samples of the three mineral

groups, with the results shown in Table B-1. Fibers were matched

at varying wavelengths of light in different oils, and the results

regressed in Hartmann space. A binder present in the grunerite

sample was removed by dissolution in water, followed by rinsing

in acetone and drying in air. Results were easily obtained for gruner-

ite and chrysotile, but the high color of riebeckite makes the recogni-

tion of color fringes and shadows difficult. To enhance the use of

the oblique illumination stop inserted from the NW, the polarizer

Appendix B: Identification of Fibrous Asbestos 335

Table B-
Properties of Common Asbestos Minerals
Amphibole Serpentine
Grunerite Riebeckite Chrysotile
(Amosite) (Crocidolite)

Approximate Fe 7 Si a 0 22 (OH)2 Na2Fe 3 (AI,Fe)2 Mg sSi 4 0 1o (OH)a

chemical Si a 0 22 (OH)

composition
Crystal System Monoclinic Monoclinic Monoclinic

Fiber axis c c a

Elongation + + (Z fiber)

(length slow) (length fast) or
  • (X fiber)
n along fiber -y' ex' -y' (Z); ex' (X)

= 1.70 = 1.70 = 1.56; = 1.

Reported range 1.679-1.719 1.685-1.700 1.545-61 (Z)
1.538-60 (X)
Standard sample 1.6995 1.6995 1.559 (Z)
(UMass)

Birefringence strong, 0.04 weak,0.004 weak, < 0.

n F - nc 0.012^ 0.019^ 0.
Color of fibers Colorless to Dark blue to Colorless
pale yellow greenish
yellow
At matching refractive index:
Color fringe in Orange-red Orange-red Orange-red
oblique illumination (may^ be
obscured)
Dispersion color Deep violet Deep violet Deep violet
(central screen) (may be
obscured)

Diagnostic features + elong, B, Blue color, low n, ± elong

-y' near 1.7 ex' near 1.7 colorless

and the fiber were oriented NE, so the shadow appeared evenly

along the length of the fiber. Slight misorientation is of no concern

because of the low birefringence. The refractive indices no found for

-y' of grunerite and (x' of riebeckite were both 1.6995. The chrysotile

sample was determined to have -y' = 1.559±O.OOl, the relatively

large error bracket being due mainly to demonstrably real variation

among the fibers rather than uncertainty in the wavelength of

match.

Other possibly fibrous minerals that may occur in asbestos samples

are talc (n along fiber 1.59), brucite (1.56), tremolite (1.63), actinolite

References

ADAMS, L.H. (1954) Fred E, Wright: 1878-1953. Science 120, 241-242. 112*
ALLEN, RD. (1956) A new equation relating index of refraction and specific gravity. Am. Mineralogist

BECKE, F.J. (1893) Uber die Bestimmbarkeit der Gesteinsgemengtheile, besonders der Plagioclase

auf Grund ihres Lichtbrechungsvermogens. Sitz. Akad. Wien 52, Abt. 1, 359. 54,

BECKE, FJ (1896) Unterschiedung von optisch + und -zweiaxigen Mineralien mit dem Mikroskop.

Tschermaks Min. Petrog. Mitt. XVI, 181. 185

BERG, J.H., and MORSE, S.A. (1981) Dispersion method for olivine, orthopyroxene, and augite.

Am. Mineralogist 66, 985-89. 300,
BETHKE, eM., and BIRNIE, RW. (1980) Computer synthesis of optical interference figures. Am.
Mineralogist 65, 1294-1301. 178

BlOT, J.B. (1820) Memoir sur les lois generales de la double refraction et de la polarisation, dans

les corps reg.ulierement cristallises. Mem. Acad. France III, 177-384. 106,
BLOSS, F.D. (1961) An Introduction to the Methods of Optical Crystallography (New York: Holt, Rinehart,

& Winston, Inc.). 82

BLOSS, F.D. (1981) The Spindle Stage: Principles and Practice (Cambridge: Cambridge University

Press). ix, 40, 70, 282, 287

BLOSS, F.D. (1985) Labelling refractive index curves for mineral series, Am. Mineralogist 70, 428-
BORN, MAX, and WOLF, EMIL (1964) Principles of Optics, 2nd (revised) Ed. (Oxford: Pergamon Press).
BRAGG, W.L. (1913) The diffraction of short electromagnetic waves by a crystal. Proc. Camb. Phil.
Soc. 17, 43-57. 98
BRAGG, W.L. (1937) Atomic Structure of Minerals (Ithaca, NY: Cornell University Press). 120
BRAGG, W.L. (1975) The Development of X-ray Analysis (London: G. Bell and Sons Ltd.), 98
BUERGER, MJ (1933) Optical Identification of Crystalline Compounds (Cambridge, MA: M.LT. Letter

Shop; copyright by John Wiley & Sons, Inc., New York), ix

BUERGER, M.J. (1933) Optical properties of ideal solution immersion liquids. Am. Mineralogist 18,
BURNS, RG. (1966) Apparatus for measuring polarized absorption spectra of small crystals, Jour.
Sci, Instrum. 43, 58-60. 138
BURNS, RG. (1970) Crystal field spectra and evidence of cation ordering in olivine minerals. Am.
Mineralogist 55, 1608-32. 138
BURRI, CONRAD (1950) Das Polarisationsmikroskop (Basel: Birkhauser), 113

'Page numbers where citation occurs.

338 References

BUTLER, M.H. (1971) Application of the polarizing microscope in the conservation of paintings

and other works of art. Bull. Internat. Inst. Conservators, Am. Group. May, 113. 2
BUTLER, RD. (1933) Immersion liquids of intermediate refraction. Am. Mineralogist 18, 386-401.
CAMERON, E.N. (1961) Ore Microscopy (New York: John Wiley & Sons, Inc.). 83
CHAPMAN. CA. (1940) A model to illustrate isogyres in interference figures. Am. Jour. Sci. 238,
CHAPMAN, CA. (1943) Large magnesia-rich triphylite crystals in pegmatite. Am. Mineralogist 28,

CHERKASOV, YU.A. (1960) Application of "focal screening" to measurement of indices of refraction

by the immersion method. Internat. Geol. Rev. 2, 218-35. 70

CHRISTIANSEN, C (1884) Untersuchungen tiber die optischen Eigenschaften von fein vertheilten

K6rpem. Wiedemanns Ann. d. Physik u. Chemie (Neue Folge) 23, 298-306; ibid. (1885) 24, 439.
CRAIG, ].R, and VAUGHAN, D.J. (1981) Ore Microscopy and Ore Petrography (New York: John Wiley

and Sons). 48

DALY, RA. (1899) On the optical characters of the vertical zone of amphiboles and pyroxenes.

Proc. Am. Acad. Arts and Sciences 311-23. 238
DEER, W.A.; HOWIE, RA.; and ZUSSMAN, JACK (1962-1986) Rock Forming Minerals, (London: Long-

mans) as follows: viii, xii

(1962) 1: Ortho- and Ring Silicates.
(1962) 5: Non-silicates.
(1963) 2: Chain Silicates.
(1967) 3: Sheet Silicates.
(1967) 4: Framework Silicates.
(1978) 2nd Ed. 2A: Single-chain Silicates.
(1982) 2nd Ed. lA: Orthosilicates.
(1986) 2nd Ed. 18: Disilicates and Ring Silicates.
DEER, W.A.; HOWIE, RA.; and ZUSSMAN, JACK (1992) An Introduction to the Rock Forming Minerals,

2nd Ed. (London: Longmans; New York: John Wiley & Sons, Inc.) viii, xii

DODGE, N.B. (1948) The dark-field color immersion method. Am. Mineralogist 33, 541-49. 70
EMMONS, RC (1943) The Universal Stage. Geol. Soc. Am. Mem. 8. 75
EMMONS, RC, and GATES, RM. (1957) Misconception of the intermediate refractive index. Bull.
Geol, Soc. Am. 68, 1413. 145
FAIRBAIRN, HW. (1943) Gelatin coated slides for refractive index immersion mounts. Am. Mineralo-
 ##### FAIRBAIRN, HW. (1943) Packing in ionic minerals, Bull. Geol, Soc. Am. 54, 1320. 15 FAIRBAIRN, HW., and SHEPPARD, CW. (1945) Maximum error in some mineralogic computations. ##### Am. Mineralogist 30, 673-703. 209 FAUST. GT, and GABRIEL. ALTON (1940) Petrographic methods and their application to the examina- ##### tion of non-metallic minerals. U.S. Bur. Mines Inform. Circ. 7129, 3-5. 46 ##### VON FEDOROW, E.S. (1896) Universalmethode und Feldspathstudien. Z. Krist. 26, 246. 283 ##### FLEISCHER, MICHAEL; WILCOX, RE.; and MATZKO, J.]. (1984) Microscopic Determination of the Nonopaque ##### Minerals, 3rd Ed. U.S. Geol. Surv. Bull. 1627 (revision of Bull 848). Includes data for many opaque minerals as well. viii, 14, 70, 71, 77, 82, 136, 142, 167, 199, 288 ##### FLETCHER, L. (1891), The optical indicatrix and the transmission of light in crystals. Mineralogical ##### Mag. 9, 278-388. 117 ##### FLETCHER, L. (1892) The Optical Indicatrix and the Transmission of Light in Crystals (annotated reprint of 1891 article; London: H. Frowde). 117 #### 340 References #### KRUMBEIN, W.e., and PElTI)OHN, F.J (1938) Manual of Sedimentary Petrography (New York: D. Apple- ton Century Co.). 45, ##### LARSEN, E.S. JR., and BERMAN, HARRY (1934) The Microscopic Determination of the Non-opaque Minerals, 2nd Ed., U.S. Geol. Surv. Bull. 848. viii, 14, 15, 65, 136, 140, 199 ##### LiPSON, HS. (1970) Crystals and X-rays (London: Wykeham Publications Ltd.). 98, ##### LONSDALE, KATHLEEN (1968) Human stones, Science 159, 1199-1207. 2 LOUISNATHAN, S.J.; BLOSS, F.D.; and KORDA, EJ (1978) Measurement of refractive indices and their ##### dispersion. Am. Mineralogist 63, 394-400. 292 ##### LOUPEKINE, 1.5. (1947) Graphical derivation of refractive index ~ for the trigonal carbonates. Am. ##### Mineralogist 32, 502-7. 149 ##### MACKENZIE, W.S., and GUILFORD, e. (1980) Atlas of Rock-Forming Minerals in Thin Section (New York: John Wiley & Sons, Inc.) 324 ##### MAcKENZIE, W.s.; DONALDSON, e.H; and GUILFORD, e. (1982) Atlas of Igneous Rocks and their Textures (New York: John Wiley & Sons, Inc.) 324 ##### MALLARD, E. (1882) Sur la me sure de l'angle des axes optiques, Bull. Soc. Mineral. France V, 77- MANDARINO, J.A (1959) Absorption and pleochroism: two much-neglected optical properties of ##### crystals. Am. Mineralogist 44, 65-77. 138, MANDARINO, J.A (1976) The Gladstone-Dale relationship. Part J. Derivation of new constants. ##### Can. Mineralogist 14, 498--502. (Also Parts II-IV, 1978, 1979, 1981: see Jaffe [1988]). 15 ##### MANGE, M.A, and MAURER, H.F.W. (1991) Heavy Minerals in Colour (London: Chapman and Hall). ##### MCCRONE, W.e. (1987) Asbestos Identification (Chicago: McCrone Research Institute). 334, 336 ##### MCCRONE, W.e.; MCCRONE, L.B.; and DELLY, J.G. (1977) Dispersion staining. Chapter X in Polarized ##### Light Microscopy, 8th Ed. (Chicago: McCrone Research Institute), 169-96. 70, 334 MERWIN, H.E., and LARSEN, E.S. JR. (1912) Mixtures of amorphous sulphur and selenium as immer- ##### sion media for the determination of high refractive indices with the microscope. Am. Jour. Sci. ##### MICHEL-LEVY, A (1888) Les mineraux des roches (Paris: Baudry). 114, 278 ##### MILNER, H.B. (1962) Sedimentary Petrography, 4th Rev. Ed., 2 vols. (London: Murby & Co.). ##### MORSE,S.A (1968) Revised dispersion method for low plagioclase, Am. Mineralogist 53, 105-16. ##### MORSE, S.A (1978) Test of plagioclase dispersion method and rapid probe analysis. Am. Mineralogist ##### MUIR, J.D. (1981) The 4-axis Universal Stage (Chicago: Microscope Publications Ltd.). 282, ##### MUNRO, M. (1963) Errors in the measurement of 2V with the universal stage. Am. Mineralogist ##### PALACHE, CHARLES; BERMAN, HARRY; and FRONDEL, CLIFFORD (1944, 1951, 1962) Dana's System of ##### Mineralogy, 7th Ed., 3 vols. (New York: John Wiley & Sons, Inc.). 86, ##### PECKETT, A(NDREW) (1992) The Colours of Opaque Minerals (Chichester: John Wiley and Sons). ##### PHILPOTTS, AR. (1989) Petrography of Igneous and Metamorphic Rocks (Englewood Cliffs: Prentice Hall). viii, 324 ##### POSN)AK, E., and MERWIN, H.E. (1922) The system ferric oxide-sulfur trioxide-water. Jour. Am. ##### Chem. Soc. 44, 1965-94. 73 RISSE, P.H. (1983a) Chemistry, structure and nomenclature of feldspars; 1-19 in Ribbe, 1983c. 270 #### References 341 RIBBE, P.H. (1983b) Interference colors; 266-70 in Ribbe, 1983c. 101 ##### RIBBE, P.H., Ed. (1983c) Feldspar Mineralogy, Mineralogical Soc. Am. Rev. MineraL 2, 2nd Ed. RIBBE, P.H., and ROSENBERG, P.E. (1971) Optical and X-ray determinative methods for fluorine in ##### topaz, Am. Mineralogist 56, 1812-21. 225, ROBINSON, PETER; JAFFE, H.W.; Ross, MALCOLM; and KLEIN, CORNELIS JR. (1971) Orientation of exsolu- tion lamellae in cJinopyroxenes and clinoamphiboles: consideration of optimal phase bound- ##### aries. Am. Mineralogist 56, 909-39. 263 ROSENFELD, J.L., and CHASE, AB. (1961) Pressure and temperature of crystallization from elastic ### effects around solid inclusions in minerals? Am. J. Sci. 259, 519-41. 47 SAYLOR, CP. (1935) Accuracy of microscopical methods for determining refractive index by immer- ##### sion. Jour. Res. Nat!. Bur. Stds. 15, 277-94. 55, 71, 72 ##### SCHUSTER, M. (1880) Uber die optische Orientierung der Plagioklase. Tschermaks Min. Petrog. Mitt. ##### SHORT, M.N. (1940) Microscopic determination of the ore minerals, U.S. Ceol. Surv. Bull. 914. viii, 12, 13, 33, 46, 83, 120, 160, 207, 279 ##### SHUBNIKOV, AV. (1960) Principles of Optical Crystallography (New York: Consultants Bureau). 118 ##### SHURCLIFF, WA (1962) Polarized Light (Cambridge: Harvard University Press). 36 ##### SKINNER, H. C W.; Ross, MALCOLM; and FRONDEL, CLIFFORD (1988) Asbestos and Other Fibrous Minerals: ##### Mineralogy, Crystal Chemistry, and Health Effects. (Oxford University Press) 333 SLEMMONS, D.B. (1962) Determination of volcanic and plutonic plagoclases using a three- or four- ##### axis universal stage. Ceol. Soc. Am. Special Paper 69. 287 ##### SMITH, H.T.U. (1938) Model to aid in visualizing the optical properties of crystals. Am. Mineralogist ##### STAPLES, L.W. (1936) Mineral determination by microchemical methods. Am. Mineralogist 21, 613- STEVENSON, J.5., and STEVENSON, L.S. (1973) Well developed growth zoning in a struvite bladder ##### stone. Canad. Mineralogist 11, 985-90. 2 ##### STOIBER, RE., and MORSE, SA (1972) Microscopic Identification of Crystals (New York: Ronald Press). Reprinted 1979, 1981, 1986 by RE. Krieger, Melbourne, FL. ix STRENS, RG.J., and FREER, ROBERT (1978) The physical basis of mineral optics, I. Classical theory. ##### Mineral. Mag. 42, 19-30. 30 Su, S.C (1992) Calibration of refractive index liquids by using optical glass standards with disper- ##### sion staining. Microscope 40, 95-108. 73, Su, S.C (1993) Determination of refractive index of solids by dispersion staining method: An ##### analytical approach. Proc. Ann. Mtg. Microscopy Soc. Am. Abstr. 51,456-457. 294,296, Su, S.C (1994) A revised dispersion method for determining the composition of olivine, orthopy- ##### roxene, augite, and plagioclase. Am. Mineralogist, submitted. 300, 301, 305 Su, S.C; BLOSS, F.D.; and GUNTER, MICKEY (1987) Procedures and computer program to refine the ##### double variation method. Am. Mineralogist 72, 1011-13. 40,72, 75, 292 Su, S.C; BLOSS, _FD.;_ RIBBE, P.H.; and STEWART, D.B. (1984) Optic axial angle, a precise measure of ##### Al,Si ordering in TI tetrahedral sites of K-rich alkali feldspars. Am. Mineralogist 69, 440-48. Su, S.C; RIBBE, P.H.; and BLOSS, F.D. (1986a) Alkali feldspars: Structural state determination from ##### composition and optic axial angle, 2V. Am. Mineralogist 71, 1285-96. 276 Su, S.C; RIBBE, P.H.; BLOSS, F.D.; and GOLDSMITH, J.R (1986b) Optical properties of single crystals ##### in the order-disorder series low albite-high albite. Am. Mineralogist 71, 1384-92. 275,277, ##### SUENO, T. (1933) On the use of standard glass powders in refractive index determination, Am. ##### Mineralogist 18, 421-30. 73, 290 ## Index ##### Accessory plate, 38, 57-59, 107-109, 142-145, ##### Acute bisectrix (Bxa), 125, 163, 164, 180, 220, ##### Amphibole, 101, 168, 202, 214, 227, 238, 263, Biaxial crystals, 8, 9, 15, 30, 104, 106, 115, Birefringence, 28, 44, 71, 78, 103, 104, 109, 111, 113, 120, 124, 127, 129, 130, 132, 133, 136, 144-146, 150, 156, 166, 167, - a-normal method, 234, - Abbe refractometer, 23, 40, 72, - and critical angle, - high accuracy, 40, - 139, 199, 201, 202, 324, 327, Absorption, 6, 25-27, 29, 47, 82, 135, 137- - biaxial crystals, - defined, - determination, 138, 201- - Absorption axes, - Absorption formula, 137, 138, 201, - biaxial, - uniaxial, - 229, 237, 284, 288, 148, 151, 153, 182, 187, 204, 205, 212, - colors rise or fall, - effect of, - principle, - retardation in, - three most common types, - use of, 106, - used to identify interference color, - 158, 210, Accuracy, 16, 35, 40, 42, 71-73, 86, 112, 149, - defined, - improving, - in routine work, - of dispersion method, 289, - of immersion method, - tested, - Acicular crystal habit, - Actinolite, 301, 327, 333, 335, - Activity, optical, - defined, - Aegirinaugite, - Aenigmatite, 254, - 310, Air, 3, 14, 17, 18, 23, 24, 34, 164, 165, 186, - color of light in, - n taken as 1 in, - refractive index of, - wave velocity, - 277-279, 320, 322, Albite, 215, 230, 234, 240-242, 266, 274, 275, - twin law, - Alcohol, 14, 44-46, - Alkali feldspar, 274, 276, 277, 319, - Allowed direction, - Alpha refractive index, 159- - confirmation, - Alpha prime (a') index, 161, 181, - Alpha-chloronaphthalene, - Alunite, 140, 145, - Amici, G.B., 40, - Ammonium chloride, 27, - Amosite, 333, - 333- 281, 287, 288, 301, 320, 323, 327, 328, - calcic, - Amplitude, 3-7, 87-89, 91, 93, - wave, - Analbite, 274, - Analcite, - 156, 311, Analyzer, 36, 57, 78, 91-93, 107, 109, 113, - need to remove, 109, - rotating, - Andalusite, 281, 319, 320, 329, 281, - Andesine, - axial, 163, Angle - critical, - extinction, - glancing, - minimum deviation, - of incidence, 17, 18, 22, 23, - of reflection, - of refraction, 17, 23, 25, 41, 79, - optic, 49, 163-167, 188, 189, 207- - silhouette, - Angles, stereo coordinate, - Anhydrite, - Anisotropic crystal plate, 20, 89, 344 Index - 76-78, 102, 104, Anisotropic crystals, 8, 14, 21, 25, 30, 47, 49, - 28, Anisotropic substances, 3, 6, 10, 14, 16, 23, - Anisotropy, test for, - Annular screening, - 208, Anorthite, vii, 208, 234, 266, 278, 304, 331, - Anorthoclase, - Anthophyllite, 327, - Anthophyllite-gedrite, - 322, Apatite, 69, 110, 136, 140, 152, 158, 200, 319- - Aperture diaphragm, - Aqua regia, Aperture; see Numerical aperture, N.A. - Aragonite, 194, 209, 235, - Arfvedsonite, 301, - Asbestos, - 300, 301, 320, 321, Augite, viii, xi, 203, 208, 241, 259, 261-264, - Axial character, 124, 136, Axial angle, 163 (see also optic angle) - Babingtonite, 196, 254- - Bakelite, - Barite, 169, 184, - Bartholinus and calcite, - Basal section, 127, 143, 235, - Basalt, - Becke, F., - 83, 149, 215, Becke line, 50, 52-56, 61, 69, 72, 74, 76, 79, - crystal high (ill.), colored, 56, - crystal low (ill.), - from lamellae, - practice, - principle, - rule for, - with colored crystals, - Berek compensator, - Bertrand lens, 35, 37, 38, 77, 123, - described, - Bertrand, E., 40, - Beryl, 122, - Beta refractive index, 159- - confirmation, - defined, - estimation, - Beta prime, - Biaxial crystal identification, 225, - properties used, - 211, 215, 216, 227, 231, 232, 118, 123, 136, 159, 163, 168, 199-202, - identification, - Biaxial indicatrix, 126, 160-162, 167, 173, - Biaxial interference figures, 125, 172-175, - naming, - Biaxial minerals, abundance, - Becke, F., Biographical comment - Bertrand, E., - Biot, J.B., - Bragg, W.H., - Bragg, W.L., - Fermat, P. de, - Fletcher, L., - Fraunhofer, J., - Fresnel, A.J., - Huygens, C, - Larsen, E.S. Jr., - Merwin, H.E., - Posnjak, E., - Rutherford, E., - Schairer, J.F., - Snell, W., - Sorby, H.C, - Thomson, J.J., - Wright, F.E., - Zies, E.G., - Biot, J.B., 1, - Biot-Fresnel Law, 30, 165, 166, 176, 178, - approximation, - Biot-Fresnel rule, 178, - approximate, - 136, 302, Biotite, 136, 177, 202, 207, 209, 319-321, 329, - Birdseye maple effect, 79, - 297, 320, 322, 326, 334- 182, 183, 185, 199, 214, 224, 226, 284, - and retardation, - biaxial crystals, - biaxial, strength, - defined, 2, - dispersion of, - estimated from interference figures, - estimated in thin section, - estimation, - estimation in immersion, - in thin section, - of a section, 21, 114, - of a substance, - partial, 21, - strength, - uniaxial crystals,