Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Physics 141 Forumla Sheet, Schemes and Mind Maps of Physics

the formula sheet for physics 141

Typology: Schemes and Mind Maps

2023/2024

Uploaded on 12/10/2024

amelia-dowling
amelia-dowling 🇺🇸

1 document

1 / 3

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Physics 141 Formula Sheet
t
x
vave
t
v
aave
dt
xd
v
dt
vd
a
𝑥 = −𝑏±√𝑏2−4𝑎𝑐
2𝑎
r
v
a2
c
xavv
tatvxx
tvvxx
tavv
f
f
ff
f
2
)(
2
1
2
0
2
2
2
1
00
00
0
downwards/m8.9g 2
mgW
Nf kk
rm
r
mv
F2
2
c
2
gr
GmM
F
2211 kg/Nm1067.6G
)cos(rFrFW
sdFdxFW x
xx
2
1
ncint WEUKE
2
2
1mvKE
r
GmM
mghUg
2
2
1kxUspring
xfEint
vF
dt
dW
t
W
P
kxFspring
vmp
fi pp
pdtFtFI
f
i
t
t
ave
2
1
t
tdtFI
𝑟𝑐𝑚 =𝑚𝑖𝑟
𝑖𝑖
𝑚𝑖𝑖 =1
𝑚𝑖𝑖 (𝑚𝑖𝑥
𝑖𝑖+𝑚𝑖𝑦
𝑖𝑗)
𝑥𝑐𝑚 =1
𝑀∫𝑥𝑑𝑚 𝑦𝑐𝑚 =1
𝑀∫𝑦𝑑𝑚 𝑧𝑐𝑚 =1
𝑀∫𝑧𝑑𝑚
ra
rv
rs
t
t
)sin(
)cos(
ry
rx
r
v
ac
2
T
r2
vt
)sin(FrFr
2
2
1IKE
IL
)sin(
rpprL
I
𝐼 = 𝑟2𝑑𝑚
2
r
GM
g
r
GM
Vg
pf3

Partial preview of the text

Download Physics 141 Forumla Sheet and more Schemes and Mind Maps Physics in PDF only on Docsity!

Physics 141 – Formula Sheet

t

x vave 

t

v aave 

dt

dx v

dt

dv a

𝑥 =

−𝑏±√𝑏^2 − 4 𝑎𝑐 2 𝑎

r

v a

2

c 

v v a x

x x vt at

x x v v t

v v at

f

f

f f

f

2 0

2

2 2

1 0 0

0 0

0

g 9. 8 m/s downward

2 

dt

dp Fnet ma

W mg f (^) k kN

m r r

mv F

2

2

c    g (^2) r

GmM F  11 2 2 G 6. 67 10 Nm /kg

  

W  FrFrcos()

W Fdx F ds

x

x x

2

1

KE UEint Wnc

2 2

1 KE  mv

r

GmM U (^) g mgh

2 2

1 Uspringkx

Eint fx F v dt

dW

t

W

P

Fspring  kx

p mv

pi^ pf

I F t Fdt p

f

i

t

t

ave

2

1

t

t

I Fdt

𝑥𝑐𝑚 =

a r

v r

s r

t

t

sin( )

cos( )

y r

x r

r

v ac

2

 T

2 r vt

 r FFrsin()

2

1 KE  I  

L I

L  r  p  rp sin( )

^  I ^ 𝐼^ =^ ∫^ 𝑟

2 𝑑𝑚

2 r

GM

g

r

GM

Vg

F k x

  k

m T  2  f

T 

yA cos(  t ) ^2 f m

k

l

g

y Asin(kxt) 

k k

v f

T

v L

m  

yf ( xvt )

sound Source

sound Observer

v v

v v f f

vsound  343 m / s 𝑑𝐵 = 10 𝐿𝑜𝑔(

𝐼 𝐼 0

)

r

constructive:

or

r  0 ,, 2 ,...

destructive:

or

r

A

F

P 

P Patm gh A 1 v 1 A 2 v 2 t

V

F   

o o

f

o

o B f f f f f o f g W

m F W mg Vg Vg 

Patm  101 , 000 Pa

2 2 2

1 2 2

2 2 1

1 P 1 gh 1  v P gh  v

3 water  1000 kg/m

L L 0 T 2

2 2

1

1 1

T

PV

T

P V

PV nRT

KE kT 2

3  R  8. 315 J/moleK k 1. 38 10 J/K  23  

Q mcT Q  mL c (^) water J kg C cice J kg C

0 0  4186 /   2090 / 

L J kg L J kg f water vwater

5 6    

f

i

V

V

W PdV Eint QW 1 𝑐𝑎𝑙 = 4. 186 𝐽

𝑃 = 𝑘𝐴

∆𝑇 𝐿

𝑃 = 𝜎𝑒𝐴𝑇 4 𝜎 = 5. 67 × 10 − 8 𝑊/𝑚 2 ∙ 𝐾 4

1

2

𝑚𝑣𝑎𝑣𝑔 2 =

3 2

𝑘𝑇 𝑄 = 𝑛𝐶𝑉∆𝑇 𝑄 = 𝑛𝐶𝑃∆𝑇

1 2

𝑘𝑇 per degree of freedom