


Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
Formula sheet in hydrogen spectrum series, prefixes, Bohr radius, circumferences of circles, Rydberg constant and moments of inertia.
Typology: Cheat Sheet
1 / 4
This page cannot be seen from the preview
Don't miss anything!
On special offer
v(t) = dx(t) dt
a(t) = dv(t) dt = d
(^2) x(t) dt^2
x(t) =
ˆ (^) t
0
v(t′)dt′
v(t) =
ˆ (^) t
0
a(t′)dt′
xf = xi + vit +^1 2 at^2 vf = vi + at vf^2 = vi^2 + 2a(xf − xi) vavg =^1 2 (vf + vi) ∆~r = ~vavg∆t F~net ≡
i
F^ ~i
F^ ~net = m~a Fg = w = mg | F~s| ≤ μs|~n| | F~k| = μs|~n| F^ ~S = −k~x
Y =
∆x/h
A∆x/ ω = vt r
ac = v^2 t r = rω^2
F^ ~G = −G m^1 m^2 r^2 ˆr
g = G mearth r^2 earth
W = F~ · d~ = | F~ ||d~| cos(θ)
ˆ (^) xf
xi
Fxdx
ˆ (^) Pf
Pi
F^ ~ · d~` =
ˆ (^) Pf
Pi
F‖d`
mv^2 Wnet = ∆K Wcons = −∆U = −∆PE PEg = Ug = mgh PEG = UG = −G m 1 m 2 r PES = US =
2 kx
2
~rcm ≡
∑^ i^ mi~ri i mi ~vcm ≡
∑^ i^ mi~vi i mi ~acm ≡
∑^ i^ mi~ai i mi ~p ≡ m~v
F~ = ∆~p ∆t ~p 1 ,f + ~p 2 ,f = ~p 1 ,i + ~p 2 ,i. J ≡~ F~ ∆t = ∆~p ~τ ≡ ~r × F~ r⊥ = r sin(θ) τ = r⊥F = Iα θ = s r ω = ∆θ ∆t
vt r α = ∆ω ∆t =^
at r ~v = −~r × ~ω θf = θi + ωit +
2 αt
2
ωf = ωi + αt ωf^2 = ω^2 i + 2α(θf − θi) ωavg =^1 2 (ωf + ωi) ~L = ~r × ~p = I~ω L = r(mv) sin θ
~τ =
∆t W = τ ∆θ Krot =
Iω^2
ω = 2πf = 2 π T
ω =
k m
ω =
g `
ω =
mg`cm I x(t) = xmax sin(ωt) v(t) = ωxmax cos(ωt) a(t) = −ω^2 xmax sin(ωt)
E =
kx^2 max v = f λ μ ≡ m `
v =
μ
k ≡ 2 π λ ysw(x, t) =
A sin(kx)
sin(ωt) fstring = fopen−open = n
( (^) v 2 `
where n ∈ { 1 , 2 , 3 ,.. .}
` = n λn 2 where n ∈ { 1 , 2 , 3 ,.. .} fopen−closed = n
( (^) v 4 `
where n ∈ { 1 , 3 , 5 ,.. .} ` = n λn 4 where n ∈ { 1 , 3 , 5 ,.. .} ytw(x, t) = A sin(kx ∓ ωt)
fo = fs
v ± vo v ∓ vs
fbeat = |f 2 − f 1 |
I =
4 πr^2 I 0 ≡ 1. 0 × 10 −^12
m^2
β[dB] = 10 log 10
ρ = m V Fb = ρV g P = P 0 + ρgh
P + ρgy +
2 ρv
(^2) = const
Q = Φv ≡ ~v · A~ = vA cos(θ)
Q =
∆t A 1 v 1 = A 2 v 2
ρvA = ∆m ∆t ∆L = αL 0 ∆T L(∆T ) = L 0 (1 + α∆T ) ∆V = βv 0 ∆T
circumference of a circle C = 2πr area of a circle A = πr^2 surface area of a sphere A = 4πr^2
volume of a sphere V =
πr^3
If Ax^2 + Bx + C = 0, x =
loga(xy) = loga(x) + loga(y)
loga
x y
= loga(x) − loga(y)
loga (xy^ ) = y loga(x)
If ax^ = y, x = loga y = log 10 y log 10 a
ln y ln a If |θ| < 0 .5 radians, sin(θ) ≈ θ (in radians)
If |θ| < 0 .5 radians, tan(θ) ≈ θ (in radians) sin(−θ) = − sin(θ) cos(−θ) = cos(θ) sin(θA + θB ) = sin(θA) cos(θB ) + cos(θA) sin(θB ) cos(θA + θB ) = cos(θA) cos(θB ) − sin(θA) sin(θB )
sin(θA) sin(θB ) = cos(θA − θB ) − cos(θA + θB ) 2 cos(θA) cos(θB ) = cos(θA − θB ) + cos(θA + θB ) 2 sin(θA) cos(θB ) = sin(θA^ −^ θB^ ) + sin(θA^ +^ θB^ ) 2 Law of Cosines c^2 = a^2 + b^2 − 2 ab cos(C)
Law of Sines a sin(A) = b sin(B) = c sin(C)
x = r cos(θ) y = r sin(θ)
r =
x^2 + y^2
θ = tan−^1 (y/x) +
0 ◦, if x > 0 180 ◦, otherwise
If R~ = A~ + B, R~ x = Ax + Bx and Ry = Ay + By If R~ = A~ − B, R~ x = Ax − Bx and Ry = Ay − By
A^ ~ · B~ = B~ · A~ = AxBx + Ay By + Az Bz = | A~|| B~| cos(θ) | A~ × B~| = | A~|| B~||sin(θ)|
Newton’s constant G = 6. 67430 × 10 −^11 m^3 kg · s^2 speed of light c ≡ 2. 99792458 × 108 m/s elementary charge e = 1. 602176634 × 10 −^19 C
electrostatic constant k = 8. 987551792 × 109 N · m^2 C^2 vacuum permittivity 0 = 8. 854187813 × 10 −^12 F/m
vacuum permeability μ 0 = 1. 2566370621 × 10 −^6 N · A−^2 (1) ≈ 4 π× 10 −^7 N · A−^2 (2) Planck’s constant h = 6. 62607015 × 10 −^34 J · s ℏ ≡ h 2 π = 1. 054571817 × 10 −^34 J · s
standard gravity g = +9. 80665 m s^2 mass of earth mearth = 5. 9723 × 1024 kg mass of moon mmoon = 7. 346 × 1022 kg mass of sun msun = 1. 9885 × 1030 kg mass of electron me = 9. 1093837015 × 10 −^31 kg
mass of proton mp = 1. 67262192369 × 10 −^27 kg mass of neutron mn = 1. 67492749804 × 10 −^27 kg volumetric radius of earth rearth = 6. 371 × 106 m earth-moon distance rEM = 3. 844 × 108 m earth-sun distance rES = 1. 496 × 1011 m Density of air at sea level at 15◦^ C: ρ 0 = 1. 225 kg m^3 Earth’s total magnetic field strength at Huntington, WV: | B~earth| ≈ 5. 15 × 10 −^5 T Vertical component of Earth’s magnetic field strength at Hunt- ington, WV: Bearth,z ≈ 4. 70 × 10 −^5 T
Bohr radius aB ≡
meke^2
= 5. 29177210903 × 10 −^11 m (4) Rydberg constant R ≡
4 πmea^2 B c
= 1. 0973731568160 × 107 m−^1 (6) hydrogen binding energy E 0 = 13.605693123 eV
q = N e F~ = k q^1 q^2 r^2 ˆr
q E~ = k q r^2 ˆr
E~ = k
dq r^2 ˆr
PE = U = k q 1 q 2 r V ≡ U q
q
Vf − Vi =
ˆ (^) Pf
Pi
E^ ~ · d~`
V = k q r
E~ = −
ˆı
∂x
∂y
∂z
E^ ~ · d A~
ΦE = E~ · A~ = A| E~| cos θ ΦE = qenclosed 0 C ≡ q V C = κ 0 A d 1 Cseries
Cparallel = C 1 + C 2 +...
U =
qV
q^2 C U =
u =
∆q ∆t I~ = nqA~vdrift q~v = I~`
R = ρ` A ρ = ρ 0 (1 + α∆T ) R = R 0 (1 + α∆T ) P = IV P = V
2 R P = IR^2 V(t) = V 0 sin(ωt)
Pavg =
Pavg = IRMSVRMS Rseries = R 1 + R 2 +... 1 Rparallel
τ = RC I(t) = Imaxe−t/τ VR(t) = Vbatterye−t/τ VC = Vbattery
1 − e−t/τ^
VR(t) = Vmaxe−t/τ VC = −Vmaxe−t/τ F^ ~B = q~v × B~ F~ = I~` × B~ ~μ = N I Aˆ ~τ = ~μ × B~ U = −μ~ · B~
B = μ 0 I 2 πr B = N μ 0 I 2 r B = N μ^0 I = nμ 0 I F
= μ^0 I^1 I^2 2 πr ΦB ≡
B^ ~ · d A~
ΦB = B~ · A~ = AB cos(θ)
EMF = − ∆Φtot ∆t
∆t EMF = N ABω sin(ωt)
∆t U =^1 2
u =
2 μ 0 B
2
τ =
2 πf C
ωC XL = 2πf L = ωL
IRMS =
|Ztotal| =
tan φ =
ωres = 2πfres =
Pavg = IRMSVRMS cos φ | E~| = c| B~|
S^ ~ = 1 μ 0
c =
√μ 0 0 v = f λ
Iavg = | E~max|| B~max| 2 μ 0 n ≡ c v n 1 sin(θ 1 ) = n 2 sin(θ 2 )
θc = sin−^1
n 2 n 1
f =^
dO^ +
dI 1 f
nl − nm nm
r 1
r 2
m ≡ hI hO = − dI dO f = r 2 m = mobjective meyepiece
m ∼
fe
` − fe do
θtelescope θnaked eye
fo fe d sin(θ) = mλ where m ∈ { 0 , ± 1 , ± 2 ,.. .} d sin(θ) =
m −
λ
where m ∈ { 1 , 2 ,.. .} 2 t = mλ where m ∈ { 0 , 1 , 2 ,.. .} 2 t =
m −
λ
where m ∈ { 1 , 2 , 3 ,.. .} sin(θ) = 1. 22 λ D E = ∆mc^2 E = hf = pc
E = hf = ℏω = hc λ (∆x)(∆p) ≥
(∆t)(∆E) ≥
rn = n^2 Z aB
nλn = nh mevn = 2πrn
En = − Z
2 n^2 (13.86 eV)
1 λ
n^2 f
n^2 i
Q = (MA + MB − MC − MD )c^2 |~L| = mevrn = nℏ N (t) = N 0 e−λt^ = N 02 −t/t^1 /^2
λ = ln 2 t 1 / 2
R ≡ ∆N ∆t
R = N λ = N ln 2 t 1 / 2 r = rnucA^1 /^3