Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Physics 211 formula sheet, Cheat Sheet of Physics

Formula sheet in hydrogen spectrum series, prefixes, Bohr radius, circumferences of circles, Rydberg constant and moments of inertia.

Typology: Cheat Sheet

2021/2022
On special offer
30 Points
Discount

Limited-time offer


Uploaded on 02/07/2022

aeinstein
aeinstein 🇺🇸

4.6

(22)

259 documents

1 / 4

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Marshall University Calculus-based Introductory Physics Formula Sheet for Common Final Exam Page 1 of 4
PHY 211
v(t) = dx(t)
dt
a(t) = dv(t)
dt=d2x(t)
dt2
x(t) = ˆt
0
v(t0)dt0
v(t) = ˆt
0
a(t0)dt0
xf=xi+vit+1
2at2
vf=vi+at
v2
f=v2
i+ 2a(xfxi)
vavg =1
2(vf+vi)
~r =~vavgt
~
Fnet X
i
~
Fi
~
Fnet =m~a
Fg=w=mg
|~
Fs| µs|~n|
|~
Fk|=µs|~n|
~
FS=k~x
Y=P
L/L0
=F
AL/L0
S=P
x/h =F
Ax/
ω=vt
r
ac=v2
t
r=2
~
FG=Gm1m2
r2ˆr
g=Gmearth
r2
earth
W=~
F·~
d=|~
F||~
d|cos(θ)
W=ˆxf
xi
Fxdx
W=ˆPf
Pi
~
F·d~
`=ˆPf
Pi
Fkd`
KE = K1
2mv2
Wnet = K
Wcons =U=∆PE
PEg=Ug=mgh
PEG=UG=Gm1m2
r
PES=US=1
2kx2
~rcm Pimi~ri
Pimi
~vcm Pimi~vi
Pimi
~acm Pimi~ai
Pimi
~p m~v
~
F=~p
t
~p1,f+~p2,f=~p1,i+~p2,i.
~
J ~
Ft= ~p
~τ ~r ×~
F
r=rsin(θ)
τ=rF=
θ=s
r
ω=θ
t=vt
r
α=ω
t=at
r
~v =~r ×~ω
θf=θi+ωit+1
2αt2
ωf=ωi+αt
ω2
f=ω2
i+ 2α(θfθi)
ωavg =1
2(ωf+ωi)
~
L=~r ×~p =I~ω
L=r(mv) sin θ
~τ =~
L
t
W=τθ
Krot =1
22
ω= 2πf =2π
T
ω=rk
m
ω=rg
`
ω=rmg`cm
I
x(t) = xmax sin(ωt)
v(t) = ωxmax cos(ωt)
a(t) = ω2xmax sin(ωt)
E=1
2kx2
max
v=fλ
µm
`
v=sF
µ
k2π
λ
ysw(x, t)
=Asin(kx)sin(ωt)
fstring =fopenopen =nv
2`
where n {1,2,3, . . .}
`=nλn
2
where n {1,2,3, . . .}
fopenclosed =nv
4`
where n {1,3,5, . . .}
`=nλn
4
where n {1,3,5, . . .}
ytw(x, t) = Asin(kx ωt)
fo=fsv±vo
vvs
fbeat =|f2f1|
I=P
A
I=P
4πr2
I01.0×1012 W
m2
β[dB] = 10 log10 I
I0
P=F
A
ρ=m
V
Fb=ρV g
P=P0+ρgh
P+ρgy +1
2ρv2= const
Q= Φv~v ·~
A=vA cos(θ)
Q=V
t
A1v1=A2v2
ρvA =m
t
L=αL0T
L(∆T) = L0(1 + αT)
V=βv0T
pf3
pf4
Discount

On special offer

Partial preview of the text

Download Physics 211 formula sheet and more Cheat Sheet Physics in PDF only on Docsity!

PHY 211

v(t) = dx(t) dt

a(t) = dv(t) dt = d

(^2) x(t) dt^2

x(t) =

ˆ (^) t

0

v(t′)dt′

v(t) =

ˆ (^) t

0

a(t′)dt′

xf = xi + vit +^1 2 at^2 vf = vi + at vf^2 = vi^2 + 2a(xf − xi) vavg =^1 2 (vf + vi) ∆~r = ~vavg∆t F~net ≡

i

F^ ~i

F^ ~net = m~a Fg = w = mg | F~s| ≤ μs|~n| | F~k| = μs|~n| F^ ~S = −k~x

Y =

∆P

∆L/L 0

∆F

A∆L/L 0

S =

∆P

∆x/h

∆F

A∆x/ ω = vt r

ac = v^2 t r = rω^2

F^ ~G = −G m^1 m^2 r^2 ˆr

g = G mearth r^2 earth

W = F~ · d~ = | F~ ||d~| cos(θ)

W =

ˆ (^) xf

xi

Fxdx

W =

ˆ (^) Pf

Pi

F^ ~ · d~` =

ˆ (^) Pf

Pi

F‖d`

KE = K ≡

mv^2 Wnet = ∆K Wcons = −∆U = −∆PE PEg = Ug = mgh PEG = UG = −G m 1 m 2 r PES = US =

2 kx

2

~rcm ≡

∑^ i^ mi~ri i mi ~vcm ≡

∑^ i^ mi~vi i mi ~acm ≡

∑^ i^ mi~ai i mi ~p ≡ m~v

F~ = ∆~p ∆t ~p 1 ,f + ~p 2 ,f = ~p 1 ,i + ~p 2 ,i. J ≡~ F~ ∆t = ∆~p ~τ ≡ ~r × F~ r⊥ = r sin(θ) τ = r⊥F = Iα θ = s r ω = ∆θ ∆t

vt r α = ∆ω ∆t =^

at r ~v = −~r × ~ω θf = θi + ωit +

2 αt

2

ωf = ωi + αt ωf^2 = ω^2 i + 2α(θf − θi) ωavg =^1 2 (ωf + ωi) ~L = ~r × ~p = I~ω L = r(mv) sin θ

~τ =

∆L~

∆t W = τ ∆θ Krot =

Iω^2

ω = 2πf = 2 π T

ω =

k m

ω =

g `

ω =

mg`cm I x(t) = xmax sin(ωt) v(t) = ωxmax cos(ωt) a(t) = −ω^2 xmax sin(ωt)

E =

kx^2 max v = f λ μ ≡ m `

v =

F

μ

k ≡ 2 π λ ysw(x, t) =

[

A sin(kx)

]

sin(ωt) fstring = fopen−open = n

( (^) v 2 `

where n ∈ { 1 , 2 , 3 ,.. .}

` = n λn 2 where n ∈ { 1 , 2 , 3 ,.. .} fopen−closed = n

( (^) v 4 `

where n ∈ { 1 , 3 , 5 ,.. .} ` = n λn 4 where n ∈ { 1 , 3 , 5 ,.. .} ytw(x, t) = A sin(kx ∓ ωt)

fo = fs

v ± vo v ∓ vs

fbeat = |f 2 − f 1 |

I =

P

A

I =

P

4 πr^2 I 0 ≡ 1. 0 × 10 −^12

W

m^2

β[dB] = 10 log 10

I

I 0

P =

F

A

ρ = m V Fb = ρV g P = P 0 + ρgh

P + ρgy +

2 ρv

(^2) = const

Q = Φv ≡ ~v · A~ = vA cos(θ)

Q =

∆V

∆t A 1 v 1 = A 2 v 2

ρvA = ∆m ∆t ∆L = αL 0 ∆T L(∆T ) = L 0 (1 + α∆T ) ∆V = βv 0 ∆T

circumference of a circle C = 2πr area of a circle A = πr^2 surface area of a sphere A = 4πr^2

volume of a sphere V =

πr^3

If Ax^2 + Bx + C = 0, x =

−B ±

B^2 − 4 AC

2 A

loga(xy) = loga(x) + loga(y)

loga

x y

= loga(x) − loga(y)

loga (xy^ ) = y loga(x)

If ax^ = y, x = loga y = log 10 y log 10 a

ln y ln a If |θ| < 0 .5 radians, sin(θ) ≈ θ (in radians)

If |θ| < 0 .5 radians, tan(θ) ≈ θ (in radians) sin(−θ) = − sin(θ) cos(−θ) = cos(θ) sin(θA + θB ) = sin(θA) cos(θB ) + cos(θA) sin(θB ) cos(θA + θB ) = cos(θA) cos(θB ) − sin(θA) sin(θB )

sin(θA) sin(θB ) = cos(θA − θB ) − cos(θA + θB ) 2 cos(θA) cos(θB ) = cos(θA − θB ) + cos(θA + θB ) 2 sin(θA) cos(θB ) = sin(θA^ −^ θB^ ) + sin(θA^ +^ θB^ ) 2 Law of Cosines c^2 = a^2 + b^2 − 2 ab cos(C)

Law of Sines a sin(A) = b sin(B) = c sin(C)

x = r cos(θ) y = r sin(θ)

r =

x^2 + y^2

θ = tan−^1 (y/x) +

0 ◦, if x > 0 180 ◦, otherwise

If R~ = A~ + B, R~ x = Ax + Bx and Ry = Ay + By If R~ = A~ − B, R~ x = Ax − Bx and Ry = Ay − By

A^ ~ · B~ = B~ · A~ = AxBx + Ay By + Az Bz = | A~|| B~| cos(θ) | A~ × B~| = | A~|| B~||sin(θ)|

Newton’s constant G = 6. 67430 × 10 −^11 m^3 kg · s^2 speed of light c ≡ 2. 99792458 × 108 m/s elementary charge e = 1. 602176634 × 10 −^19 C

electrostatic constant k = 8. 987551792 × 109 N · m^2 C^2 vacuum permittivity  0 = 8. 854187813 × 10 −^12 F/m

vacuum permeability μ 0 = 1. 2566370621 × 10 −^6 N · A−^2 (1) ≈ 4 π× 10 −^7 N · A−^2 (2) Planck’s constant h = 6. 62607015 × 10 −^34 J · s ℏ ≡ h 2 π = 1. 054571817 × 10 −^34 J · s

standard gravity g = +9. 80665 m s^2 mass of earth mearth = 5. 9723 × 1024 kg mass of moon mmoon = 7. 346 × 1022 kg mass of sun msun = 1. 9885 × 1030 kg mass of electron me = 9. 1093837015 × 10 −^31 kg

mass of proton mp = 1. 67262192369 × 10 −^27 kg mass of neutron mn = 1. 67492749804 × 10 −^27 kg volumetric radius of earth rearth = 6. 371 × 106 m earth-moon distance rEM = 3. 844 × 108 m earth-sun distance rES = 1. 496 × 1011 m Density of air at sea level at 15◦^ C: ρ 0 = 1. 225 kg m^3 Earth’s total magnetic field strength at Huntington, WV: | B~earth| ≈ 5. 15 × 10 −^5 T Vertical component of Earth’s magnetic field strength at Hunt- ington, WV: Bearth,z ≈ 4. 70 × 10 −^5 T

Bohr radius aB ≡

ℏ^2

meke^2

= 5. 29177210903 × 10 −^11 m (4) Rydberg constant R ≡

4 πmea^2 B c

= 1. 0973731568160 × 107 m−^1 (6) hydrogen binding energy E 0 = 13.605693123 eV

PHY 213

q = N e F~ = k q^1 q^2 r^2 ˆr

E~ ≡ F~

q E~ = k q r^2 ˆr

E~ = k

dq r^2 ˆr

PE = U = k q 1 q 2 r V ≡ U q

= −W

q

Vf − Vi =

ˆ (^) Pf

Pi

E^ ~ · d~`

V = k q r

E~ = −

ˆı

∂V

∂x

∂V

∂y

  • ˆk

∂V

∂z

ΦE ≡

E^ ~ · d A~

ΦE = E~ · A~ = A| E~| cos θ ΦE = qenclosed  0 C ≡ q V C = κ 0 A d 1 Cseries

C 1

C 2

Cparallel = C 1 + C 2 +...

U =

qV

U =

q^2 C U =

CV^2

u =

| E~|^2

I =

∆q ∆t I~ = nqA~vdrift q~v = I~`

V = IR

R = ρ` A ρ = ρ 0 (1 + α∆T ) R = R 0 (1 + α∆T ) P = IV P = V

2 R P = IR^2 V(t) = V 0 sin(ωt)

Pavg =

I 0 V 0

Pavg = IRMSVRMS Rseries = R 1 + R 2 +... 1 Rparallel

R 1

R 2

τ = RC I(t) = Imaxe−t/τ VR(t) = Vbatterye−t/τ VC = Vbattery

1 − e−t/τ^

VR(t) = Vmaxe−t/τ VC = −Vmaxe−t/τ F^ ~B = q~v × B~ F~ = I~` × B~ ~μ = N I Aˆ ~τ = ~μ × B~ U = −μ~ · B~

B = μ 0 I 2 πr B = N μ 0 I 2 r B = N μ^0 I = nμ 0 I F = μ^0 I^1 I^2 2 πr ΦB ≡

B^ ~ · d A~

ΦB = B~ · A~ = AB cos(θ)

EMF = − ∆Φtot ∆t

= −N ∆Φ^1

∆t EMF = N ABω sin(ωt)

VS

VP

NS

NP

IP

IS

EMF = −L

∆I

∆t U =^1 2

LI^2

u =

2 μ 0 B

2

τ =

L

R

XC = 1

2 πf C

ωC XL = 2πf L = ωL

IRMS =

VRMS

|Z|

|Ztotal| =

R^2 + (XL − XC )^2

tan φ =

XL − XC

R

ωres = 2πfres =

LC

Pavg = IRMSVRMS cos φ | E~| = c| B~|

S^ ~ = 1 μ 0

E^ ~ × B~

c =

√μ 0  0 v = f λ

Iavg = | E~max|| B~max| 2 μ 0 n ≡ c v n 1 sin(θ 1 ) = n 2 sin(θ 2 )

θc = sin−^1

n 2 n 1

P =

f =^

dO^ +

dI 1 f

nl − nm nm

r 1

r 2

m ≡ hI hO = − dI dO f = r 2 m = mobjective meyepiece

m ∼

N.P.

fe

` − fe do

M =

θtelescope θnaked eye

fo fe d sin(θ) = mλ where m ∈ { 0 , ± 1 , ± 2 ,.. .} d sin(θ) =

m −

λ

where m ∈ { 1 , 2 ,.. .} 2 t = mλ where m ∈ { 0 , 1 , 2 ,.. .} 2 t =

m −

λ

where m ∈ { 1 , 2 , 3 ,.. .} sin(θ) = 1. 22 λ D E = ∆mc^2 E = hf = pc

E = hf = ℏω = hc λ (∆x)(∆p) ≥

(∆t)(∆E) ≥

rn = n^2 Z aB

nλn = nh mevn = 2πrn

En = − Z

2 n^2 (13.86 eV)

1 λ

n^2 f

n^2 i

R

Q = (MA + MB − MC − MD )c^2 |~L| = mevrn = nℏ N (t) = N 0 e−λt^ = N 02 −t/t^1 /^2

λ = ln 2 t 1 / 2

R ≡ ∆N ∆t

R = N λ = N ln 2 t 1 / 2 r = rnucA^1 /^3