Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

PreCalculus Exam Formula Sheets, Cheat Sheet of Calculus

Final exam review and cheat sheet on precalculus

Typology: Cheat Sheet

2020/2021

Uploaded on 04/23/2021

oliver97
oliver97 ๐Ÿ‡บ๐Ÿ‡ธ

4.4

(43)

324 documents

1 / 7

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
CBC MATHEMATICS
MATH 2412-PreCalculus
Exam Formula Sheets
CBC Mathematics 2019Fall
๏ฑ System of Equations and Matrices
๏ƒ˜ 3 Matrix Row Operations:
โ€ข Switch any two rows.
โ€ข Multiply any row by a nonzero constant.
โ€ข Add any constant-multiple row to another
๏ฑ Even and Odd functions
โ€ข Even function: ๐‘“(โˆ’๐‘ฅ)= ๐‘“(๐‘ฅ) Odd function: ๐‘“(โˆ’๐‘ฅ)= โˆ’๐‘“(๐‘ฅ)
๏ฑ Graph Symmetry
โ€ข ๐‘ฅ-axis symmetry: if (๐‘ฅ,๐‘ฆ) is on the graph, then (๐‘ฅ,โˆ’๐‘ฆ) is also on the graph
โ€ข ๐‘ฆ-axis symmetry: if (๐‘ฅ,๐‘ฆ) is on the graph, then (โˆ’๐‘ฅ,๐‘ฆ) is also on the graph
โ€ข origin symmetry: if (๐‘ฅ,๐‘ฆ)f is on the graph, then (โˆ’๐‘ฅ,โˆ’๐‘ฆ) is also on the graph
๏ฑ Function Transformations
๏ƒ˜ Stretch and Compress
โ€ข ๐‘ฆ = ๐‘Ž๐‘“(๐‘ฅ), ๐‘Ž > 0 vertical: stretch ๐‘“(๐‘ฅ) if ๐‘Ž > 1
๏ƒ˜ Reflections
โ€ข ๐‘ฆ = โˆ’๐‘“(๐‘ฅ) reflect ๐‘“(๐‘ฅ) about ๐‘ฅ-axis
โ€ข ๐‘ฆ = ๐‘“(โˆ’๐‘ฅ) reflect ๐‘“(๐‘ฅ) about ๐‘ฆ-axis
๏ƒ˜ Stretch and Compress
โ€ข ๐‘ฆ = ๐‘Ž๐‘“(๐‘ฅ), ๐‘Ž > 0 vertical: stretch ๐‘“(๐‘ฅ) if ๐‘Ž > 1
: compress ๐‘“(๐‘ฅ) if 0 < ๐‘Ž <1
โ€ข ๐‘ฆ = ๐‘“(๐‘Ž๐‘ฅ), ๐‘Ž > 0 horizontal: stretch ๐‘“(๐‘ฅ) if 0 < ๐‘Ž <1
: compress ๐‘“(๐‘ฅ) if ๐‘Ž > 1
๏ฑ Shifts
โ€ข ๐‘ฆ = ๐‘“(๐‘ฅ) +๐‘˜, ๐‘˜ > 0 vertical: shift ๐‘“(๐‘ฅ) up
๐‘ฆ = ๐‘“(๐‘ฅ)โˆ’๐‘˜, ๐‘˜ > 0 : shift ๐‘“(๐‘ฅ) down
โ€ข ๐‘ฆ = ๐‘“(๐‘ฅ +โ„Ž) โ„Ž > 0 horizontal: shift ๐‘“(๐‘ฅ) left
๐‘ฆ = ๐‘“(๐‘ฅ โˆ’โ„Ž), โ„Ž > 0 : shift ๐‘“(๐‘ฅ) right
pf3
pf4
pf5

Partial preview of the text

Download PreCalculus Exam Formula Sheets and more Cheat Sheet Calculus in PDF only on Docsity!

MATH 2412-PreCalculus

Exam Formula Sheets

๏ฑ System of Equations and Matrices

๏ƒ˜ 3 Matrix Row Operations:

  • Switch any two rows.
  • Multiply any row by a nonzero constant.
  • Add any constant-multiple row to another

๏ฑ Even and Odd functions

โ€ข Even function: ๐‘“(โˆ’๐‘ฅ) = ๐‘“(๐‘ฅ) Odd function: ๐‘“(โˆ’๐‘ฅ) = โˆ’๐‘“(๐‘ฅ)

๏ฑ Graph Symmetry

โ€ข ๐‘ฅ-axis symmetry: if (๐‘ฅ, ๐‘ฆ) is on the graph, then (๐‘ฅ, โˆ’๐‘ฆ) is also on the graph

โ€ข ๐‘ฆ-axis symmetry: if (๐‘ฅ, ๐‘ฆ) is on the graph, then (โˆ’๐‘ฅ, ๐‘ฆ) is also on the graph

โ€ข origin symmetry: if (๐‘ฅ, ๐‘ฆ)f is on the graph, then (โˆ’๐‘ฅ, โˆ’๐‘ฆ) is also on the graph

๏ฑ Function Transformations

๏ƒ˜ Stretch and Compress

โ€ข ๐‘ฆ = ๐‘Ž๐‘“(๐‘ฅ), ๐‘Ž > 0 vertical: stretch ๐‘“(๐‘ฅ) if ๐‘Ž > 1

๏ƒ˜ Reflections

โ€ข ๐‘ฆ = โˆ’๐‘“(๐‘ฅ) reflect ๐‘“(๐‘ฅ) about ๐‘ฅ-axis

โ€ข ๐‘ฆ = ๐‘“(โˆ’๐‘ฅ) reflect ๐‘“(๐‘ฅ) about ๐‘ฆ-axis

๏ƒ˜ Stretch and Compress

โ€ข ๐‘ฆ = ๐‘Ž๐‘“(๐‘ฅ), ๐‘Ž > 0 vertical: stretch ๐‘“(๐‘ฅ) if ๐‘Ž > 1

: compress ๐‘“(๐‘ฅ) if 0 < ๐‘Ž < 1

โ€ข ๐‘ฆ = ๐‘“(๐‘Ž๐‘ฅ), ๐‘Ž > 0 horizontal: stretch ๐‘“(๐‘ฅ) if 0 < ๐‘Ž < 1

: compress ๐‘“(๐‘ฅ) if ๐‘Ž > 1

๏ฑ Shifts

โ€ข ๐‘ฆ = ๐‘“(๐‘ฅ) + ๐‘˜, ๐‘˜ > 0 vertical: shift ๐‘“(๐‘ฅ) up

๐‘ฆ = ๐‘“(๐‘ฅ) โˆ’ ๐‘˜, ๐‘˜ > 0 : shift ๐‘“(๐‘ฅ) down

โ€ข ๐‘ฆ = ๐‘“(๐‘ฅ + โ„Ž) โ„Ž > 0 horizontal: shift ๐‘“(๐‘ฅ) left

๐‘ฆ = ๐‘“(๐‘ฅ โˆ’ โ„Ž), โ„Ž > 0 : shift ๐‘“(๐‘ฅ) right

MATH 2412-PreCalculus

Exam Formula Sheets

๏ฑ Formulas/Equations

โ€ข Slope Intercept: ๐‘ฆ = ๐‘š๐‘ฅ + ๐‘ Point-Slope: ๐‘ฆ โˆ’ ๐‘ฆ 1 = ๐‘š(๐‘ฅ โˆ’ ๐‘ฅ 1 )

โ€ข Slope: ๐‘š = ๐‘ฆ ๐‘ฅ^2 โˆ’๐‘ฆ^1

2 โˆ’๐‘ฅ 1

  • Average Rate of Change: ฮ”๐‘ฆฮ”๐‘ฅ = ๐‘“(๐‘)โˆ’๐‘“(๐‘Ž)๐‘โˆ’๐‘Ž , where ๐‘Ž โ‰  ๐‘

โ€ข Circle: ๐ถ๐‘–๐‘Ÿ๐‘๐‘ข๐‘š๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘๐‘’ = 2๐œ‹๐‘Ÿ = ๐œ‹๐‘‘, ๐ด๐‘Ÿ๐‘’๐‘Ž = ๐œ‹๐‘Ÿ^2

โ€ข Triangle: ๐ด๐‘Ÿ๐‘’๐‘Ž = 12 ๐‘โ„Ž

โ€ข Rectangle: ๐‘ƒ๐‘’๐‘Ÿ๐‘–๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ = 2๐‘™ + 2๐‘ค , ๐ด๐‘Ÿ๐‘’๐‘Ž = ๐‘™๐‘ค

โ€ข Rectangular Solid: ๐‘‰๐‘œ๐‘™๐‘ข๐‘š๐‘’ = ๐‘™๐‘คโ„Ž, ๐‘†๐‘ข๐‘Ÿ๐‘“๐‘Ž๐‘๐‘’ ๐ด๐‘Ÿ๐‘’๐‘Ž = 2๐‘™๐‘ค + 2๐‘™โ„Ž + 2๐‘คโ„Ž

โ€ข Sphere: ๐‘‰๐‘œ๐‘™๐‘ข๐‘š๐‘’ =

4

โ€ข Right Circular Cylinder: ๐‘‰๐‘œ๐‘™๐‘ข๐‘š๐‘’ = ๐œ‹๐‘Ÿ^2 โ„Ž , ๐‘†๐‘ข๐‘Ÿ๐‘“๐‘Ž๐‘๐‘’ ๐ด๐‘Ÿ๐‘’๐‘Ž = 2๐œ‹๐‘Ÿ^2 + 2๐œ‹๐‘Ÿโ„Ž

๏ฑ General Form of Quadratic Function: ๐‘“(๐‘ฅ) = ๐‘Ž๐‘ฅ^2 + ๐‘๐‘ฅ + ๐‘ , (๐‘Ž โ‰  0)

โ€ข Quadratic Formula: ๐‘ฅ = โˆ’๐‘ยฑโˆš๐‘

(^2) โˆ’4๐‘Ž๐‘ 2๐‘Ž

โ€ข Vertex (โ„Ž, ๐‘˜): โ„Ž = โˆ’ 2๐‘Ž๐‘ ๐‘˜ = ๐‘Ž(โ„Ž)^2 + ๐‘(โ„Ž) + ๐‘,

or (โˆ’

2๐‘Ž , ๐‘“ (โˆ’^

2๐‘Ž)),^ or^ (โˆ’^

2๐‘Ž ,^

4๐‘Ž๐‘โˆ’๐‘^2

โ€ข Axis of symmetry: ๐‘ฅ = โ„Ž

๏ฑ Vertex Form of Quadratic Function: ๐‘“(๐‘ฅ) = ๐‘Ž(๐‘ฅ โˆ’ โ„Ž)^2 + ๐‘˜ vertex (โ„Ž, ๐‘˜)

๏ฑ Polynomial function: ๐‘“(๐‘ฅ) = ๐‘Ž๐‘›๐‘ฅ๐‘›^ + ๐‘Ž๐‘›โˆ’1๐‘ฅ๐‘›โˆ’1^ + โ‹ฏ + ๐‘Ž 1 ๐‘ฅ^1 + ๐‘Ž 0

๏ƒ˜ Polynomial graph has at most ๐‘› โˆ’ 1 turning points.

๏ƒ˜ Remainder Theorem

โ€ข If polynomial ๐‘“(๐‘ฅ) รท (๐‘ฅ โˆ’ ๐‘), remainder is ๐‘“(๐‘).

๏ƒ˜ Factor Theorem

โ€ข If ๐‘“(๐‘) = 0, then ๐‘ฅ โˆ’ ๐‘ is a linear factor of ๐‘“(๐‘ฅ).

โ€ข If ๐‘ฅ โˆ’ ๐‘ is a linear factor of ๐‘“(๐‘ฅ), then ๐‘“(๐‘) = 0.

MATH 2412-PreCalculus

Exam Formula Sheets

โ€ข If ๐‘€ = ๐‘, then log๐‘Ž(๐‘€) = log๐‘Ž(๐‘).

โ€ข Change of Base formula log๐‘Ž(๐‘€) = log(๐‘€)log(๐‘Ž) or log๐‘Ž(๐‘€) = ln(๐‘€)ln(๐‘Ž)

๏ฑ Exponential Models Formulas

โ€ข Simple Interest: ๐ผ = ๐‘ƒ๐‘Ÿ๐‘ก

โ€ข Compound Interest: ๐ด = ๐‘ƒ (1 + ๐‘›๐‘Ÿ)

๐‘›โˆ™๐‘ก

โ€ข Continuous Compounding: ๐ด = ๐‘ƒ๐‘’๐‘Ÿโˆ™๐‘ก

  • Effective Rate of Interest:

Compounding ๐‘› times per year ๐‘Ÿ๐‘’๐‘“๐‘“ = (1 + ๐‘›๐‘Ÿ)

๐‘›

Compounding continuously per year ๐‘Ÿ๐‘’๐‘“๐‘“ = ๐‘’๐‘Ÿ^ โˆ’ 1

โ€ข Growth & Decay: ๐ด(๐‘ก) = ๐ด 0 ๐‘’๐‘˜โˆ™๐‘ก

โ€ข Newtonโ€™s Law of Cooling: ๐‘ข(๐‘ก) = ๐‘‡ + (๐‘ข 0 โˆ’ ๐‘‡)๐‘’๐‘˜โˆ™๐‘ก

โ€ข Logistic Model: ๐‘ƒ(๐‘ก) = 1+๐‘Ž๐‘’๐‘โˆ’๐‘โˆ™๐‘ก

๏ฑ Sequences and Series

  • ๐‘›! = ๐‘›(๐‘› โˆ’ 1)(๐‘› โˆ’ 2) โˆ™ โ‹ฏ โˆ™ (3)(2)(1)
  • Arithmetic Sequence:

๐‘›๐‘กโ„Ž^ term ๐‘Ž๐‘› = ๐‘Ž 1 + (๐‘› โˆ’ 1)๐‘‘

Sum of first ๐‘› terms ๐‘†๐‘› = โˆ‘ ๐‘›๐‘˜=1(๐‘Ž 1 + (๐‘˜ โˆ’ 1)๐‘‘)= ๐‘› 2 (๐‘Ž 1 + ๐‘Ž๐‘›)

or ๐‘†๐‘› = โˆ‘ ๐‘›๐‘˜=1 (๐‘Ž 1 + (๐‘˜ โˆ’ 1)๐‘‘)= ๐‘› 2 (2๐‘Ž 1 + (๐‘› โˆ’ 1)๐‘‘).

  • Geometric Sequence:

๐‘›๐‘กโ„Ž^ term ๐‘Ž๐‘› = ๐‘Ž 1 (๐‘Ÿ)๐‘›โˆ’

Sum of first ๐‘› terms ๐‘†๐‘› = โˆ‘ ๐‘›๐‘˜=1 ๐‘Ž 1 ๐‘Ÿ๐‘˜โˆ’1= ๐‘Ž 1 โˆ™ 1โˆ’๐‘Ÿ

๐‘›

1โˆ’๐‘Ÿ for^ ๐‘Ÿ โ‰  0,

โ€ข Geometric Series: โˆ‘ โˆž๐‘˜=1 ๐‘Ž 1 ๐‘Ÿ๐‘˜โˆ’1= 1โˆ’๐‘Ÿ๐‘Ž^1 if |๐‘Ÿ| < 1

MATH 2412-PreCalculus

Exam Formula Sheets

๏ฑ Binomial Theorem:

(๐‘ฅ + ๐‘Ž)๐‘›^ = โˆ‘ ๐‘›๐‘—=0 (๐‘›๐‘— ) ๐‘ฅ๐‘›โˆ’๐‘—๐‘Ž๐‘—= (๐‘› 0 )๐‘ฅ๐‘›^ + (๐‘› 1 )๐‘ฅ๐‘›โˆ’1๐‘Ž + โ‹ฏ + ( ๐‘›โˆ’1๐‘› )๐‘ฅ๐‘Ž๐‘›โˆ’1^ + (๐‘›๐‘›)๐‘Ž๐‘›

๏ฑ Trigonometry

๏ƒ˜ Circular Measure and Motion Formulas

  • Arc Length ๐‘  = ๐‘Ÿ๐œƒ Area of Sector ๐ด = 12 ๐‘Ÿ^2 ๐œƒ
  • Linear Speed ๐‘ฃ = ๐‘ ๐‘ก , ๐‘ฃ = ๐‘Ÿ๐œ” Angular Speed ๐œ” = ๐œƒ๐‘ก ๏ƒ˜ Acute Angle
  • sin(๐œƒ) = ๐‘๐‘ = (^) โ„Ž๐‘ฆ๐‘๐‘œ๐‘ก๐‘’๐‘›๐‘ข๐‘ ๐‘’๐‘œ๐‘๐‘๐‘œ๐‘ ๐‘–๐‘ก๐‘’ cos(๐œƒ) = ๐‘Ž๐‘ = (^) โ„Ž๐‘ฆ๐‘๐‘œ๐‘ก๐‘’๐‘›๐‘ข๐‘ ๐‘’๐‘Ž๐‘‘๐‘—๐‘Ž๐‘๐‘’๐‘›๐‘ก tan(๐œƒ) = ๐‘๐‘Ž = (^) ๐‘Ž๐‘‘๐‘—๐‘Ž๐‘๐‘’๐‘›๐‘ก๐‘œ๐‘๐‘๐‘œ๐‘ ๐‘–๐‘ก๐‘’
  • csc(๐œƒ) = ๐‘๐‘ = โ„Ž๐‘ฆ๐‘๐‘œ๐‘ก๐‘’๐‘›๐‘ข๐‘ ๐‘’๐‘œ๐‘๐‘๐‘œ๐‘ ๐‘–๐‘ก๐‘’ sec(๐œƒ) = (^) ๐‘Ž๐‘ = โ„Ž๐‘ฆ๐‘๐‘œ๐‘ก๐‘’๐‘›๐‘ข๐‘ ๐‘’๐‘Ž๐‘‘๐‘—๐‘Ž๐‘๐‘’๐‘›๐‘ก cot(๐œƒ) = ๐‘Ž๐‘ = ๐‘Ž๐‘‘๐‘—๐‘Ž๐‘๐‘’๐‘›๐‘ก๐‘œ๐‘๐‘๐‘œ๐‘ ๐‘–๐‘ก๐‘’ ๏ƒ˜ General Angle
  • sin(๐œƒ) = ๐‘๐‘Ÿ cos(๐œƒ) = ๐‘Ž๐‘Ÿ tan(๐œƒ) = ๐‘๐‘Ž
  • csc(๐œƒ) = ๐‘Ÿ๐‘ ,๐‘ โ‰  0 sec(๐œƒ) = (^) ๐‘Ž๐‘Ÿ ,๐‘Ž โ‰  0 cot(๐œƒ) = ๐‘Ž๐‘ ,๐‘ โ‰  0 ๏ƒ˜ Cofunctions
  • sin(๐œƒ) = cos (๐œ‹ 2 โˆ’ ๐œƒ) , cos(๐œƒ) = sin (๐œ‹ 2 โˆ’ ๐œƒ) , tan(๐œƒ) = cot (๐œ‹ 2 โˆ’ ๐œƒ)
  • csc(๐œƒ) = sec (๐œ‹ 2 โˆ’ ๐œƒ) , sec(๐œƒ) = csc (๐œ‹ 2 โˆ’ ๐œƒ) , cot(๐œƒ) = tan (๐œ‹ 2 โˆ’ ๐œƒ) ๏ƒ˜ Fundamental Identities
  • tan(๐œƒ) = sin(๐œƒ)cos(๐œƒ) cot(๐œƒ) = cos(๐œƒ)sin(๐œƒ)
  • csc(๐œƒ) = (^) sin(๐œƒ)^1 sec(๐œƒ) = (^) cos(๐œƒ)^1 cot(๐œƒ) = (^) tan(๐œƒ)^1
  • sin^2 (๐œƒ) + cos^2 (๐œƒ) = 1 tan^2 (๐œƒ) + 1 = sec^2 (๐œƒ)^ cot^2 (๐œƒ) + 1 = csc^2 (๐œƒ) ๏ƒ˜ Even-Odd Identities
  • sin(โˆ’๐œƒ) = โˆ’sin(๐œƒ)^ cos(โˆ’๐œƒ) = cos(๐œƒ)^ tan(โˆ’๐œƒ) = โˆ’ tan(๐œƒ)
  • csc(โˆ’๐œƒ) = โˆ’csc(๐œƒ)^ sec(โˆ’๐œƒ) = sec(๐œƒ)^ cot(โˆ’๐œƒ) = โˆ’ cot(๐œƒ) ๏ƒ˜ Inverse Functions
  • ๐‘ฆ = sinโˆ’1(๐‘ฅ) means ๐‘ฅ = sin(๐‘ฆ) where โˆ’1 โ‰ค ๐‘ฅ โ‰ค 1 and โˆ’ ๐œ‹ 2 โ‰ค ๐‘ฆ โ‰ค ๐œ‹ 2
  • ๐‘ฆ = cosโˆ’1(๐‘ฅ) means ๐‘ฅ = cos(๐‘ฆ) where โˆ’1 โ‰ค ๐‘ฅ โ‰ค 1 and 0 โ‰ค ๐‘ฆ โ‰ค ๐œ‹
  • ๐‘ฆ = tanโˆ’1(๐‘ฅ) means ๐‘ฅ = tan(๐‘ฆ) where โˆ’โˆž โ‰ค ๐‘ฅ โ‰ค โˆž and โˆ’ ๐œ‹ 2 < ๐‘ฆ < ๐œ‹ 2

MATH 2412-PreCalculus

Exam Formula Sheets

  • sin(๐›ผ) โˆ’ sin(๐›ฝ) = 2 sin (๐›ผโˆ’๐›ฝ 2 ) cos (๐›ผ+๐›ฝ 2 )
  • cos(๐›ผ) + cos(๐›ฝ) = 2 cos (๐›ผ+๐›ฝ 2 ) cos (๐›ผโˆ’๐›ฝ 2 )
  • cos(๐›ผ) โˆ’ cos(๐›ฝ) = โˆ’2 sin (๐›ผ+๐›ฝ 2 ) sin (๐›ผโˆ’๐›ฝ 2 )

๏ƒ˜ Law of Sines

  • sin(๐ด)๐‘Ž = sin(๐ต)๐‘ = sin(๐ถ)๐‘

๏ƒ˜ Law of Cosines

  • ๐‘Ž^2 = ๐‘^2 + ๐‘^2 โˆ’ 2๐‘๐‘ cos(๐ด)
  • ๐‘^2 = ๐‘Ž^2 + ๐‘^2 โˆ’ 2๐‘Ž๐‘ cos(๐ต)
  • ๐‘^2 = ๐‘Ž^2 + ๐‘^2 โˆ’ 2๐‘Ž๐‘ cos(๐ถ)

๏ƒ˜ Area of SSS Triangles (Heronโ€™s Formula)

  • ๐พ = โˆš๐‘ (๐‘  โˆ’ ๐‘Ž)(๐‘  โˆ’ ๐‘)(๐‘  โˆ’ ๐‘) , where ๐‘  = 12 (๐‘Ž + ๐‘ + ๐‘)

๏ƒ˜ Area of SAS Triangles

  • ๐พ = 12 ๐‘Ž๐‘ sin(๐ถ) , ๐พ = 12 ๐‘๐‘ sin(๐ด) , ๐พ = 12 ๐‘Ž๐‘ sin(๐ต)

๏ƒ˜ For ๐‘ฆ = ๐ดsin(๐œ”๐‘ฅ โˆ’ ๐œ‘) or ๐‘ฆ = ๐ดcos(๐œ”๐‘ฅ โˆ’ ๐œ‘) , with ๐œ” > 0

โ€ข Amplitude = |๐ด| , Period= ๐‘‡ = 2๐œ‹๐œ” , Phase shift = ๐œ‘๐œ”