Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Math 10560 Practice Final Exam, Study notes of Differential and Integral Calculus

A practice final exam for a mathematics course, specifically math 10560. The exam covers various topics such as limits, derivatives, integrals, series, and differential equations. The exam consists of 25 multiple choice questions, each worth 6 points.

Typology: Study notes

2021/2022

Uploaded on 04/18/2024

v-arce-mcquade
v-arce-mcquade 🇺🇸

1 / 16

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Name:
Instructor:Math 10560, Practice Final Exam:
May 1, 2012
Be sure that you have all 15 pages of the test.
No calculators are to be used.
The exam lasts for two hours.
When told to begin, remove this answer sheet and keep it under the
rest of your test. When told to stop, hand in just this one page.
The Honor Code is in effect for this examination, including keeping your answer
sheet under cover.
PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!
1. (a) (b) (c) (d) (e)
2. (a) (b) (c) (d) (e)
.....................................................................
3. (a) (b) (c) (d) (e)
4. (a) (b) (c) (d) (e)
.....................................................................
5. (a) (b) (c) (d) (e)
6. (a) (b) (c) (d) (e)
.....................................................................
7. (a) (b) (c) (d) (e)
8. (a) (b) (c) (d) (e)
.....................................................................
9. (a) (b) (c) (d) (e)
10. (a) (b) (c) (d) (e)
.....................................................................
11. (a) (b) (c) (d) (e)
12. (a) (b) (c) (d) (e)
.....................................................................
13. (a) (b) (c) (d) (e)
14. (a) (b) (c) (d) (e)
15. (a) (b) (c) (d) (e)
16. (a) (b) (c) (d) (e)
.....................................................................
17. (a) (b) (c) (d) (e)
18. (a) (b) (c) (d) (e)
.....................................................................
19. (a) (b) (c) (d) (e)
20. (a) (b) (c) (d) (e)
.....................................................................
21. (a) (b) (c) (d) (e)
22. (a) (b) (c) (d) (e)
.....................................................................
23. (a) (b) (c) (d) (e)
24. (a) (b) (c) (d) (e)
.....................................................................
25. (a) (b) (c) (d) (e)
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff

Partial preview of the text

Download Math 10560 Practice Final Exam and more Study notes Differential and Integral Calculus in PDF only on Docsity!

Math 10560, Practice Final Exam: Instructor: May 1, 2012

  • Be sure that you have all 15 pages of the test.
  • No calculators are to be used.
  • The exam lasts for two hours.
  • When told to begin, remove this answer sheet and keep it under the rest of your test. When told to stop, hand in just this one page.
  • The Honor Code is in effect for this examination, including keeping your answer sheet under cover. PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!
  1. (a) (b) (c) (d) (e)
  2. (a) (b) (c) (d) (e) .....................................................................
  3. (a) (b) (c) (d) (e)
  4. (a) (b) (c) (d) (e) .....................................................................
  5. (a) (b) (c) (d) (e)
  6. (a) (b) (c) (d) (e) .....................................................................
  7. (a) (b) (c) (d) (e)
  8. (a) (b) (c) (d) (e) .....................................................................
  9. (a) (b) (c) (d) (e)
  10. (a) (b) (c) (d) (e) .....................................................................
  11. (a) (b) (c) (d) (e)
  12. (a) (b) (c) (d) (e) .....................................................................
  13. (a) (b) (c) (d) (e)
  14. (a) (b) (c) (d) (e)
  15. (a) (b) (c) (d) (e)
  16. (a) (b) (c) (d) (e) .....................................................................
  17. (a) (b) (c) (d) (e)
  18. (a) (b) (c) (d) (e) .....................................................................
  19. (a) (b) (c) (d) (e)
  20. (a) (b) (c) (d) (e) .....................................................................
  21. (a) (b) (c) (d) (e)
  22. (a) (b) (c) (d) (e) .....................................................................
  23. (a) (b) (c) (d) (e)
  24. (a) (b) (c) (d) (e) .....................................................................
  25. (a) (b) (c) (d) (e)

Instructor:

Multiple Choice

1.(6 pts.) Let f (x) = ex^ −1 and let f −^1 denote the inverse function. Then (f −^1 )′(e^2 −1) = is

(a) e−^1 (b)

e^2 − 1 (c) e

(d) e^2 (e) e−^2

2.(6 pts.) Solve the following equation for x:

ln(x + 4) − ln x = 1.

(a) x =

1 − e (b) x =

e − 1 and x =

e + 1

(c) There is no solution. (d) x = e + 2 and x = e − 2

(e) x =

e − 1

Instructor:

5.(6 pts.) The integral (^) ∫ π/ 2 0

x cos(x)dx

is

(a) divergent (b)

(c) π 2

(d) 0 (e) 1 − π 2

6.(6 pts.) Evaluate (^) ∫ x^2 √ 9 − x^2

dx.

(a)

[

arcsin(x/3) − x 3

]

  • C (b)

x

9 − x^2 + C

(c) 9 arcsin(x/3) + C (d)

[

arcsin(x/3) − x

9 − x^2 9

]

+ C

(e)

[

arcsin(x/3) − x^2 9

]

+ C

Instructor:

7.(6 pts.) If you expand 2 x + 1 x^3 + x as a partial fraction, which expression below would you

get?

(a)

x

−x + 2 x^2 + 1 (b)

x^2

x + 1

(c)

x

x^2 + 1 (d)

x

x x^2 + 1

(e)

x

x^2 + 1

8.(6 pts.) The integral (^) ∫ 2 0

1 − x dx

is

(a) π √ 2

(b) 0 (c) divergent

(d) π 6 (e) ln 2

Instructor:

11.(6 pts.) If x dy dx

  • 3y =

x

, and y(1) = 10, find y(2).

(a) 2 (b)

(c) 7 (d)

(e) 0

12.(6 pts.) The solution to the initial value problem

y′^ = x cos^2 y y(2) = 0

satisfies the implicit equation

(a) cos y = x − 1

(b) ey 2 = ecos^ x^ − ecos 2

(c) tan(y) = x^2 2

(d) cos(y) = x + cos(2)

(e) e^2 y+1^ = arcsin(x − 2) + e

Instructor:

13.(6 pts.) The general solution to the differential equation

d^2 y dt^2

dy dt

  • 2y = 0

is given by

(a) y(t) = c 1 e^2 t^ + c 2 et^ (b) y(t) = c 1 et^ + c 2 te−t

(c) y(t) = c 1 cos(2t) + c 2 sin(t) (d) y(t) = c 1 e^2 t^ + c 2 tet

(e) y(t) = c 1 e−^2 t^ + c 2 et

14.(6 pts.) Find

∑^ ∞

n=

22 n 3 · 5 n−^1

(a)

(b)

(c)

(d)

(e)

Instructor:

17.(6 pts.) The interval of convergence of the series ∑^ ∞

n=

(x + 3)n √ n

is

(a) [2, 4] (b) [− 4 , −2) (c) (− 4 , −2)

(d) (2, 4) (e) (− 1 , 1)

18.(6 pts.) If f (x) =

∑^ ∞

n=

(−1)n^ (x − 2)n (2n + 1)! , find the power series centered at 2 for the

function

∫ (^) x

2

f (t) dt.

(a) The given function can not be represented by a power series centered at 2.

(b)

∑^ ∞

n=

(−1)n^ (x − 2)n+ (n + 1)!

(c)

∑^ ∞

n=

(−1)n^ (x − 2)n+ (n + 1)(2n + 1)!

(d)

∑^ ∞

n=

(−1)n^ (x − 2)^2 n+ (n + 1)(2n)!

(e)

∑^ ∞

n=

(−1)n^ (x − 2)n+ (n^2 )(2n + 1)!

Instructor:

19.(6 pts.) Which series below is the MacLaurin series (Taylor series centered at 0) for x^2 1 + x

(a)

∑^ ∞

n=

(−1)nx^2 n^ (b)

∑^ ∞

n=

(−1)nx^2 n−^2 n! (c)

∑^ ∞

n=

x^2 n+

(d)

∑^ ∞

n=

(−1)n^ xn+2^ (e)

∑^ ∞

n=

xn+ n + 2

20.(6 pts.) Find the degree 3 MacLaurin polynomial (Taylor polynomial centered at 0) for the function ex 1 − x^2

(a) 1 + x − x^3 6 (b) 1 − x^2 2

x^3 5

(c) 1 + x − 5 x^3 3

(d) 1 + x + 3 x^2 2

7 x^3 6

(e) 1 + x + x^2 6

  • 0 x^3

Instructor:

23.(6 pts.) The point (2, 11 π 3 ) in polar coordinates corresponds to which point below in Cartesian coordinates?

(a) (1, −

(b) (

(c) (−

(d) (− 1 ,

(e) Since 11 π 3

2 π, there is no such point.

24.(6 pts.) Find the equation for the tangent line to the curve with polar equation: r = 2 − 2 cos θ at the point θ = π/2.

(a) y = 2 − π + 2x (b) y = 2 + π 2 − x (c) y = 2 − x

(d) y = 0 (e) y = 2 + 2x

Instructor:

25.(6 pts.) Find the length of the polar curve between θ = 0 and θ = 2π

r = e−θ.

(a) 2 e−^4 π^ (b) 14 (1 − e−^4 π) (c) 2 − e−^2 π

(d) 2 π(1 + e−^2 π) (e)

2(1 − e−^2 π)

Math 10560, Practice Final Exam: Instructor: ANSWERS May 1, 2012

  • Be sure that you have all 15 pages of the test.
  • No calculators are to be used.
  • The exam lasts for two hours.
  • When told to begin, remove this answer sheet and keep it under the rest of your test. When told to stop, hand in just this one page.
  • The Honor Code is in effect for this examination, including keeping your answer sheet under cover. PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!
  1. (a) (b) (c) (d) (•)
  2. (a) (b) (c) (d) (•) .....................................................................
  3. (a) (•) (c) (d) (e)
  4. (•) (b) (c) (d) (e) .....................................................................
  5. (a) (b) (•) (d) (e)
  6. (a) (b) (c) (•) (e) .....................................................................
  7. (•) (b) (c) (d) (e)
  8. (a) (b) (•) (d) (e) .....................................................................
  9. (a) (•) (c) (d) (e)
  10. (a) (b) (c) (d) (•) .....................................................................
  11. (•) (b) (c) (d) (e)
  12. (a) (b) (•) (d) (e) .....................................................................
  13. (•) (b) (c) (d) (e)
  14. (a) (b) (•) (d) (e)
  15. (a) (b) (c) (•) (e)
  16. (•) (b) (c) (d) (e) .....................................................................
  17. (a) (•) (c) (d) (e)
  18. (a) (b) (•) (d) (e) .....................................................................
  19. (a) (b) (c) (•) (e)
  20. (a) (b) (c) (•) (e) .....................................................................
  21. (a) (b) (c) (d) (•)
  22. (a) (•) (c) (d) (e) .....................................................................
  23. (•) (b) (c) (d) (e)
  24. (a) (b) (•) (d) (e) .....................................................................
  25. (a) (b) (c) (d) (•)