Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Printable algebra formula sheet, Cheat Sheet of Algebra

Formula sheet include algebra, trigonometry, differentiation, integration, vectors, mechanics, probability and statistics.

Typology: Cheat Sheet

2021/2022

Uploaded on 02/07/2022

skips
skips 🇺🇸

4.4

(11)

222 documents

1 / 16

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
List MF19
List of formulae and statistical tables
Cambridge International AS & A Level
Mathematics (9709) and Further Mathematics (9231)
For use from 2020 in all papers for the above syllabuses.
CST319
*2508709701*
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff

Partial preview of the text

Download Printable algebra formula sheet and more Cheat Sheet Algebra in PDF only on Docsity!

List MF

List of formulae and statistical tables

Cambridge International AS & A Level

Mathematics (9709) and Further Mathematics (9231)

For use from 2020 in all papers for the above syllabuses.

CST
PURE MATHEMATICS

Mensuration

Volume of sphere =

4 3 3 π r

Surface area of sphere =

2 4 π r

Volume of cone or pyramid =

1 3 ×^ base area^ ×height

Area of curved surface of cone = π r ×slant height

Arc length of circle = r θ ( θ in radians)

Area of sector of circle

1 2 2

= r θ ( θ in radians)

Algebra

For the quadratic equation

2 ax + bx + c = 0 :

2 4

b b ac x a

For an arithmetic series:

un = a + ( n − 1) d ,

1 1 2 2

Sn = n a ( + l ) = n {2 a + ( n −1) } d

For a geometric series:

n 1 un ar

− = ,

n

n

a r S r r

, (^) ( 1 ) 1

a S r r

∞ =^ <

Binomial series:

1 2 2 3 3 ( ) 1 2 3

n n n^ n n^ n n n n a b a a b a b a b b

K , where n is a positive integer

and

n (^) n

r r n r

n n n^ n n^ n x nx x x

  • = + + + +K , where n is rational and x < 1

Integration

(Arbitrary constants are omitted; a denotes a positive constant.)

f( x )

f( x ) d x

n x

1

n x

n

( n ≠ −1)

x

ln x

e

x e

x

sin x −cos x

cos x sin x

2 sec x tan x

2 2

x + a

tan

x

a a

− ^ 

2 2

xa

ln 2

x a

a x a

( x > a )

2 2

ax

ln 2

a x

a a x

( x^ < a )

d d d d d d

v u u x uv v x x x

∫ ∫

f ( ) d ln f ( ) f ( )

x x x x

Vectors

If a = a 1 (^) i + a 2 (^) j + a 3 k and b = b 1 (^) i + b 2 (^) j + b 3 k then

a b. = a b 1 1 + a b 2 2 + a b 3 3 = a b cos θ

FURTHER PURE MATHEMATICS

Algebra

Summations:

1 2 1

n

r

r n n

=

∑ =^ + ,^

(^2 ) 6 1

n

r

r n n n

=

∑ =^ +^ + ,^

3 1 2 2 4 1

n

r

r n n

=

∑ =^ +

Maclaurin’s series:

2 ( ) f( ) f(0) f (0) f (0) f (0) 2!!

r x x r x x r

= + ′^ + ′′ + K + +K

2

e exp( ) 1 2!!

r x x^ x x x r

= = + + + K + +K (^) (all x )

2 3 1 ln(1 ) ( 1) 2 3

r x x (^) r x x x r

  • = − + − K + − +K (–1 < x ⩽ 1)

3 5 2 1

sin ( 1) 3! 5! (2 1)!

r x x (^) r x x x r

= − + − + − +

K K (all x )

2 4 2

cos 1 ( 1) 2! 4! (2 )!

r x x (^) r x x r

= − + − K + − +K (^) (all x )

3 5 2 1 1 tan ( 1) 3 5 2 1

r x x (^) r x x x r

− = − + − + − +

K K (–1 ⩽ x ⩽ 1)

3 5 2 1

sinh 3! 5! (2 1)!

r x x x x x r

= + + + + +

K K (all x )

2 4 2

cosh 1 2! 4! (2 )!

r x x x x r

= + + + K + +K (^) (all x )

3 5 2 1 1 tanh 3 5 2 1

r x x x x x r

− = + + + + +

K K (–1 < x < 1)

Trigonometry

If

1 2

t = tan x then:

2

sin 1

t x t

and

2

2

cos 1

t x t

Hyperbolic functions

2 2 cosh x − sinh x ≡ 1 , sinh 2 x ≡ 2sinh x cosh x ,

2 2 cosh 2 x ≡ cosh x +sinh x

1 2 sinh x ln ( x x 1 )

− = + +

1 2

cosh x ln ( x x 1 )

− = + − ( x ⩾ 1)

(^1 ) 2

tanh ln (| | 1) 1

x x x x

− ^ + 
MECHANICS

Uniformly accelerated motion

v = u + at ,

1 s = 2 ( u + v t ),

1 2 s = ut + 2 at ,

2 2 v = u + 2 as

FURTHER MECHANICS

Motion of a projectile

Equation of trajectory is:

2

2 2

tan 2 cos

gx y x V

Elastic strings and springs

x T l

2

x E l

Motion in a circle

For uniform circular motion, the acceleration is directed towards the centre and has magnitude

2 ω r or

2 v

r

Centres of mass of uniform bodies

Triangular lamina:

2 3

along median from vertex

Solid hemisphere of radius r :

3 8

r from centre

Hemispherical shell of radius r :

1 2

r from centre

Circular arc of radius r and angle 2 α:

r sin α

from centre

Circular sector of radius r and angle 2 α:

2 sin

r α

from centre

Solid cone or pyramid of height h :

3 4

h from vertex

PROBABILITY & STATISTICS

Summary statistics

For ungrouped data:

x x n

= , standard deviation

2 2 ( x x ) x (^) 2 x n n

For grouped data:

xf x f

, standard deviation

2 2 ( x x ) f x f (^) 2 x f f

Discrete random variables

E( X )= Σ xp ,

2 2 Var( X ) = Σ x p −{E( X )}

For the binomial distribution B( , n p ):

r n r r

n p p p r

, μ = np ,

2

σ = np (1 − p )

For the geometric distribution Geo( p ):

1 (1 )

r pr p p

− = − ,

p

For the Poisson distribution Po( λ)

e !

r

pr r

− λ λ = , μ = λ,

2 σ =λ

Continuous random variables

E( X ) = x f( ) d x x

2 2 Var( X ) = x f( ) d x x −{E( X )} ∫

Sampling and testing

Unbiased estimators:

x x n

2 2 2 (^ )^1 2 (^ )

1 1

x x x s x n n n

Σ − ^ Σ 

Central Limit Theorem:

2

X ~ N , n

σ μ

Approximate distribution of sample proportion:

N ,

p p p n

THE NORMAL DISTRIBUTION FUNCTION

If Z has a normal distribution with mean 0 and

variance 1, then, for each value of z , the table gives

the value of Φ( z ), where

Φ( z ) = P( Zz ).

For negative values of z , use Φ(– z ) = 1 – Φ( z ).

z 0 1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

ADD

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359 4 8 12 16 20 24 28 32 36

0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753 4 8 12 16 20 24 28 32 36

0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141 4 8 12 15 19 23 27 31 35

0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517 4 7 11 15 19 22 26 30 34

0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879 4 7 11 14 18 22 25 29 32

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224 3 7 10 14 17 20 24 27 31

0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549 3 7 10 13 16 19 23 26 29

0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852 3 6 9 12 15 18 21 24 27

0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133 3 5 8 11 14 16 19 22 25

0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389 3 5 8 10 13 15 18 20 23

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621 2 5 7 9 12 14 16 19 21

1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830 2 4 6 8 10 12 14 16 18

1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015 2 4 6 7 9 11 13 15 17

1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177 2 3 5 6 8 10 11 13 14

1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319 1 3 4 6 7 8 10 11 13

1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441 1 2 4 5 6 7 8 10 11

1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545 1 2 3 4 5 6 7 8 9

1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633 1 2 3 4 4 5 6 7 8

1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706 1 1 2 3 4 4 5 6 6

1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767 1 1 2 2 3 4 4 5 5

2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817 0 1 1 2 2 3 3 4 4

2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857 0 1 1 2 2 2 3 3 4

2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890 0 1 1 1 2 2 2 3 3

2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916 0 1 1 1 1 2 2 2 2

2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936 0 0 1 1 1 1 1 2 2

2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952 0 0 0 1 1 1 1 1 1

2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964 0 0 0 0 1 1 1 1 1

2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974 0 0 0 0 0 1 1 1 1

2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981 0 0 0 0 0 0 0 1 1

2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986 0 0 0 0 0 0 0 0 0

Critical values for the normal distribution

If Z has a normal distribution with mean 0 and

variance 1, then, for each value of p , the table

gives the value of z such that

P( Zz ) = p.

p 0.75 0.90 0.95 0.975 0.99 0.995 0.9975 0.999 0.

z 0.674 1.282 1.645 1.960 2.326 2.576 2.807 3.090 3.

CRITICAL VALUES FOR THE t -DISTRIBUTION

If T has a t -distribution with ν degrees of freedom, then,

for each pair of values of p and ν, the table gives the value

of t such that:

WILCOXON SIGNED-RANK TEST

The sample has size n.

P is the sum of the ranks corresponding to the positive differences.

Q is the sum of the ranks corresponding to the negative differences.

T is the smaller of P and Q.

For each value of n the table gives the largest value of T which will lead to rejection of the null hypothesis at

the level of significance indicated.

Critical values of T

Level of significance

One-tailed 0.05 0.025 0.01 0.

Two-tailed 0.1 0.05 0.02 0.

n = 6 2 0

For larger values of n , each of P and Q can be approximated by the normal distribution with mean

1 4

n n ( +1)

and variance

1 24

n n ( + 1)(2 n + 1).

WILCOXON RANK-SUM TEST

The two samples have sizes m and n , where mn.

R (^) m is the sum of the ranks of the items in the sample of size m.

W is the smaller of R (^) m and m ( n + m + 1) – R (^) m.

For each pair of values of m and n , the table gives the largest value of W which will lead to rejection of the

null hypothesis at the level of significance indicated.

Critical values of W

Level of significance

One-tailed 0.05 0.025 0.01 0.05 0.025 0.01 0.05 0.025 0.01 0.05 0.025 0.

Two-tailed 0.1 0.05 0.02 0.1 0.05 0.02 0.1 0.05 0.02 0.1 0.05 0.

n m = 3 m = 4 m = 5 m = 6

Level of significance

One-tailed 0.05 0.025 0.01 0.05 0.025 0.01 0.05 0.025 0.01 0.05 0.025 0.

Two-tailed 0.1 0.05 0.02 0.1 0.05 0.02 0.1 0.05 0.02 0.1 0.05 0.

n m = 7 m = 8 m = 9 m = 10

For larger values of m and n , the normal distribution with mean

1 2

m m ( + n + 1)and variance

1 12

mn m ( + n +1)

should be used as an approximation to the distribution of R (^) m.

BLANK PAGE