









Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
Formula sheet include algebra, trigonometry, differentiation, integration, vectors, mechanics, probability and statistics.
Typology: Cheat Sheet
1 / 16
This page cannot be seen from the preview
Don't miss anything!
Mensuration
Volume of sphere =
4 3 3 π r
Surface area of sphere =
2 4 π r
Volume of cone or pyramid =
1 3 ×^ base area^ ×height
Area of curved surface of cone = π r ×slant height
Area of sector of circle
1 2 2
Algebra
For the quadratic equation
2 ax + bx + c = 0 :
2 4
b b ac x a
For an arithmetic series:
un = a + ( n − 1) d ,
1 1 2 2
Sn = n a ( + l ) = n {2 a + ( n −1) } d
For a geometric series:
n 1 un ar
− = ,
n
n
a r S r r
, (^) ( 1 ) 1
a S r r
Binomial series:
1 2 2 3 3 ( ) 1 2 3
n n n^ n n^ n n n n a b a a b a b a b b
K , where n is a positive integer
and
n (^) n
r r n r
n n n^ n n^ n x nx x x
Integration
(Arbitrary constants are omitted; a denotes a positive constant.)
f( x ) ∫
f( x ) d x
n x
1
n x
n
( n ≠ −1)
x
ln x
e
x e
x
sin x −cos x
cos x sin x
2 sec x tan x
2 2
x + a
tan
x
a a
2 2
x − a
ln 2
x a
a x a
( x > a )
2 2
a − x
ln 2
a x
a a x
( x^ < a )
d d d d d d
v u u x uv v x x x
∫ ∫
f ( ) d ln f ( ) f ( )
x x x x
∫
Vectors
If a = a 1 (^) i + a 2 (^) j + a 3 k and b = b 1 (^) i + b 2 (^) j + b 3 k then
Algebra
Summations:
1 2 1
n
r
r n n
=
∑ =^ + ,^
(^2 ) 6 1
n
r
r n n n
=
∑ =^ +^ + ,^
3 1 2 2 4 1
n
r
r n n
=
∑ =^ +
Maclaurin’s series:
2 ( ) f( ) f(0) f (0) f (0) f (0) 2!!
r x x r x x r
2
e exp( ) 1 2!!
r x x^ x x x r
= = + + + K + +K (^) (all x )
2 3 1 ln(1 ) ( 1) 2 3
r x x (^) r x x x r
3 5 2 1
sin ( 1) 3! 5! (2 1)!
r x x (^) r x x x r
= − + − + − +
K K (all x )
2 4 2
cos 1 ( 1) 2! 4! (2 )!
r x x (^) r x x r
= − + − K + − +K (^) (all x )
3 5 2 1 1 tan ( 1) 3 5 2 1
r x x (^) r x x x r
− = − + − + − +
K K (–1 ⩽ x ⩽ 1)
3 5 2 1
sinh 3! 5! (2 1)!
r x x x x x r
= + + + + +
K K (all x )
2 4 2
cosh 1 2! 4! (2 )!
r x x x x r
= + + + K + +K (^) (all x )
3 5 2 1 1 tanh 3 5 2 1
r x x x x x r
− = + + + + +
K K (–1 < x < 1)
Trigonometry
If
1 2
t = tan x then:
2
sin 1
t x t
and
2
2
cos 1
t x t
Hyperbolic functions
2 2 cosh x − sinh x ≡ 1 , sinh 2 x ≡ 2sinh x cosh x ,
2 2 cosh 2 x ≡ cosh x +sinh x
1 2 sinh x ln ( x x 1 )
− = + +
1 2
− = + − ( x ⩾ 1)
(^1 ) 2
tanh ln (| | 1) 1
x x x x
Uniformly accelerated motion
v = u + at ,
1 s = 2 ( u + v t ),
1 2 s = ut + 2 at ,
2 2 v = u + 2 as
Motion of a projectile
Equation of trajectory is:
2
2 2
tan 2 cos
gx y x V
Elastic strings and springs
x T l
2
x E l
Motion in a circle
For uniform circular motion, the acceleration is directed towards the centre and has magnitude
2 ω r or
2 v
r
Centres of mass of uniform bodies
Triangular lamina:
2 3
along median from vertex
Solid hemisphere of radius r :
3 8
r from centre
Hemispherical shell of radius r :
1 2
r from centre
from centre
2 sin
from centre
Solid cone or pyramid of height h :
3 4
h from vertex
Summary statistics
For ungrouped data:
x x n
= , standard deviation
2 2 ( x x ) x (^) 2 x n n
For grouped data:
xf x f
, standard deviation
2 2 ( x x ) f x f (^) 2 x f f
Discrete random variables
E( X )= Σ xp ,
2 2 Var( X ) = Σ x p −{E( X )}
For the binomial distribution B( , n p ):
r n r r
n p p p r
2
For the geometric distribution Geo( p ):
1 (1 )
r pr p p
− = − ,
p
e !
r
pr r
− λ λ = , μ = λ,
2 σ =λ
Continuous random variables
E( X ) = x f( ) d x x ∫
2 2 Var( X ) = x f( ) d x x −{E( X )} ∫
Sampling and testing
Unbiased estimators:
x x n
2 2 2 (^ )^1 2 (^ )
1 1
x x x s x n n n
Central Limit Theorem:
2
X ~ N , n
σ μ
Approximate distribution of sample proportion:
p p p n
If Z has a normal distribution with mean 0 and
variance 1, then, for each value of z , the table gives
the value of Φ( z ), where
Φ( z ) = P( Z ⩽ z ).
For negative values of z , use Φ(– z ) = 1 – Φ( z ).
z 0 1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9
ADD
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359 4 8 12 16 20 24 28 32 36
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753 4 8 12 16 20 24 28 32 36
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141 4 8 12 15 19 23 27 31 35
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517 4 7 11 15 19 22 26 30 34
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879 4 7 11 14 18 22 25 29 32
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224 3 7 10 14 17 20 24 27 31
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549 3 7 10 13 16 19 23 26 29
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852 3 6 9 12 15 18 21 24 27
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133 3 5 8 11 14 16 19 22 25
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389 3 5 8 10 13 15 18 20 23
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621 2 5 7 9 12 14 16 19 21
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830 2 4 6 8 10 12 14 16 18
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015 2 4 6 7 9 11 13 15 17
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177 2 3 5 6 8 10 11 13 14
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319 1 3 4 6 7 8 10 11 13
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441 1 2 4 5 6 7 8 10 11
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545 1 2 3 4 5 6 7 8 9
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633 1 2 3 4 4 5 6 7 8
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706 1 1 2 3 4 4 5 6 6
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767 1 1 2 2 3 4 4 5 5
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817 0 1 1 2 2 3 3 4 4
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857 0 1 1 2 2 2 3 3 4
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890 0 1 1 1 2 2 2 3 3
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916 0 1 1 1 1 2 2 2 2
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936 0 0 1 1 1 1 1 2 2
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952 0 0 0 1 1 1 1 1 1
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964 0 0 0 0 1 1 1 1 1
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974 0 0 0 0 0 1 1 1 1
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981 0 0 0 0 0 0 0 1 1
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986 0 0 0 0 0 0 0 0 0
Critical values for the normal distribution
If Z has a normal distribution with mean 0 and
variance 1, then, for each value of p , the table
gives the value of z such that
P( Z ⩽ z ) = p.
p 0.75 0.90 0.95 0.975 0.99 0.995 0.9975 0.999 0.
z 0.674 1.282 1.645 1.960 2.326 2.576 2.807 3.090 3.
of t such that:
The sample has size n.
P is the sum of the ranks corresponding to the positive differences.
Q is the sum of the ranks corresponding to the negative differences.
T is the smaller of P and Q.
For each value of n the table gives the largest value of T which will lead to rejection of the null hypothesis at
the level of significance indicated.
Critical values of T
Level of significance
One-tailed 0.05 0.025 0.01 0.
Two-tailed 0.1 0.05 0.02 0.
n = 6 2 0
For larger values of n , each of P and Q can be approximated by the normal distribution with mean
1 4
n n ( +1)
and variance
1 24
n n ( + 1)(2 n + 1).
The two samples have sizes m and n , where m ⩽ n.
R (^) m is the sum of the ranks of the items in the sample of size m.
W is the smaller of R (^) m and m ( n + m + 1) – R (^) m.
For each pair of values of m and n , the table gives the largest value of W which will lead to rejection of the
null hypothesis at the level of significance indicated.
Critical values of W
Level of significance
One-tailed 0.05 0.025 0.01 0.05 0.025 0.01 0.05 0.025 0.01 0.05 0.025 0.
Two-tailed 0.1 0.05 0.02 0.1 0.05 0.02 0.1 0.05 0.02 0.1 0.05 0.
n m = 3 m = 4 m = 5 m = 6
Level of significance
One-tailed 0.05 0.025 0.01 0.05 0.025 0.01 0.05 0.025 0.01 0.05 0.025 0.
Two-tailed 0.1 0.05 0.02 0.1 0.05 0.02 0.1 0.05 0.02 0.1 0.05 0.
n m = 7 m = 8 m = 9 m = 10
For larger values of m and n , the normal distribution with mean
1 2
m m ( + n + 1)and variance
1 12
mn m ( + n +1)
should be used as an approximation to the distribution of R (^) m.