
Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
Cheat sheet on PySpark SQL: Creating data frames, column operations, SQL queries
Typology: Cheat Sheet
1 / 1
This page cannot be seen from the preview
Don't miss anything!
FURTHERMORE: Spark, Scala and Python Training Training Course
from pyspark.sql import SparkSession
spark = SparkSession.builder.appName("PySpark SQL.config("spark.some.config.option", "some-value") .getOrCreate()
#import pyspark class Row from module sql
from pyspark.sql import *
sc = spark.sparkContext A = sc.textFile("Filename.txt") B = lines.map(lambda x: x.split(",")) C = parts.map(lambda a: Row(col1=a[0],col2=int(a[1]))) C_df = spark.createDataFrame(C)
C = parts.map(lambda a: Row(col1=a[0], col2=int(a[1].strip()))) schemaString = "MyTable" D = [StructField(field_name, StringType(), True) for field_name in schemaString.split()] E = StructType(D) spark.createDataFrame(C, E).show()
df = spark.read.json("table.json) df.show() df2 = spark.read.load("tablee2.json", format="json")
df3 = spark.read.load("newFile.parquet")
df.dtypes -- Return df column names and data types
df.show() -- Display the content of df
df.head() -- Return first n rows
df.first(n) -- Return the first n rows
df.schema -- Return the schema of df
df.describe().show() -- Compute summary statistics
df.columns -- Return the columns of df
df.count() -- Count the number of rows in df
df.distinct().count() -- Count the number of distinct rows in df
df.printSchema() -- Print the schema of df
df.explain() -- Print the (logical and physical) plans
from pyspark.sql import functions as f
df.select("col1").show() df.select("col2","col3") \ .show()
df.select("col1", f.when(df.col2> 30, 1) \ .otherwise(0)) \ .show() df[df.col1.isin("A","B")] .collect() Running SQL Queries Programmatically
peopledf.createGlobalTempView("column1") df.createTempView("column1") df.createOrReplaceTempView("column2")
df_one = spark.sql("SELECT * FROM customer").show() df_new = spark.sql("SELECT * FROM global_temp.people")\ .show()
rdd_1 = df.rdd df.toJSON().first() df.toPandas()
df.select("Col1", "Col2")\ .write \ .save("newFile.parquet") df.select("col3", "col5") \ .write \ .save("table_new.json",format="json")
spark.stop()
df = df.withColumn('col1',df.table.col1) \ .withColumn('col2',df.table.col2)
.withColumn('col3',df.table.col3) \ .withColumn('col4',df.table.col4) .withColumn(col5', explode(df.table.col5))
df = df.withColumnRenamed('col1', 'column1')
df = df.drop("col3", "col4") df = df.drop(df.col3).drop(df.col4) Actions
df.sort("col1", ascending=False).collect() df.orderBy(["col1","col3"],ascending=[0,1])\ .collect()
df.na.fill(20).show() df.na.drop().show() df.na \ .replace(10, 20) \ .show()
df.repartition(10)\ df with 10 partitions .rdd
.getNumPartitions() df.coalesce(1).rdd.getNumPartitions()