Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Question bank with solutions: Matrices, Exercises of Mathematics

Practice Problems with Solutions.

Typology: Exercises

2021/2022

Uploaded on 02/24/2022

desmond
desmond ๐Ÿ‡บ๐Ÿ‡ธ

4.8

(12)

328 documents

1 / 11

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Topic: Matrices
Question bank with solutions
One mark question ( V S A)
1. Define matrix
2. Define a diagonal matrix
3. Define scalar matrix
4. Define symmetric matrix
5. Define skew-symmetric matrix
6.In a matrix [2 5 19 โˆ’17
35 โˆ’2 5
2 12
โˆš3 1 โˆ’5 17]
find 1) order of the matrix
2) Write the elements of ๐‘Ž13 ,๐‘Ž21 , ๐‘Ž33 , ๐‘Ž24 , ๐‘Ž23
7. If a matrix 8 elements what is the possible order it can have ?
8. If a matrix 18 elements what is the possible order it can have?
9. construct 2 ร—2 matrix [๐‘Ž๐‘–๐‘—] whose elements are given by
1) ๐‘Ž๐‘–๐‘— = (๐‘–+๐‘—) 2 2) ๐‘Ž๐‘–๐‘— = (๐‘–+๐‘—) 2
2
10. construct the 2 ร—3 matrix whose elements are given by ๐‘Ž๐‘–๐‘—= |๐‘–โˆ’๐‘—|
11. Construct the 3ร—2 matrix whose elements are given by ๐‘Ž๐‘–๐‘—= ๐‘–๐‘—
12. Find x, y, z if [4 3
๐‘ฅ 5]= [๐‘ฆ ๐‘ง
1 5]
13. Find x, y, z if [๐‘ฅ+๐‘ฆ 2
5+๐‘ง ๐‘ฅ๐‘ฆ]= [6 2
5 8]
14. Find the matrix x such that 2A + B + X =0 where A = [โˆ’1 2
3 4] and B = [3 โˆ’2
1 5]
15. If A = [1 2 3
2 3 1] B = [3 โˆ’1 3
โˆ’1 0 2] Find 2A โ€“ B
pf3
pf4
pf5
pf8
pf9
pfa

Partial preview of the text

Download Question bank with solutions: Matrices and more Exercises Mathematics in PDF only on Docsity!

Topic: Matrices

Question bank with solutions

One mark question ( V S A)

  1. Define matrix
  2. Define a diagonal matrix
  3. Define scalar matrix
  4. Define symmetric matrix
  5. Define skew-symmetric matrix

6.In a matrix (^) [

5 2 12 โˆš3^1 โˆ’5 17

]

find 1) order of the matrix

  1. Write the elements of ๐‘Ž 13 , ๐‘Ž 21 , ๐‘Ž 33 , ๐‘Ž 24 , ๐‘Ž 23
  1. If a matrix 8 elements what is the possible order it can have?
  2. If a matrix 18 elements what is the possible order it can have?
  3. construct 2 ร— 2 matrix [๐‘Ž๐‘–๐‘—] whose elements are given by

(๐‘–+๐‘—) 2 2

  1. construct the 2 ร— 3 matrix whose elements are given by ๐‘Ž๐‘–๐‘—= |๐‘– โˆ’ ๐‘—|
  2. Construct the 3ร— 2 matrix whose elements are given by ๐‘Ž๐‘–๐‘—=

๐‘– ๐‘—

  1. Find x, y, z if [^4 ๐‘ฅ 5

]= [

]

  1. Find x, y, z if [

5 + ๐‘ง ๐‘ฅ๐‘ฆ]=^ [

]

  1. Find the matrix x such that 2A + B + X =0 where A = [โˆ’1^2 3 4

] and B = [^3 โˆ’ 1 5

]

  1. If A = [

] B = [

] Find 2A โ€“ B

  1. Find X if Y =[

] and 2X+Y = [

]

  1. Find X If X+Y = [^7 2 5

] and X-Y = [^3 0 3

]

  1. Simplify cos ๐œƒ [ cos ๐œƒ sin ๐œƒ โˆ’sin ๐œƒ cos ๐œƒ

] + sin ๐œƒ [ sin ๐œƒ โˆ’cos ๐œƒ cos ๐œƒ sin ๐œƒ

]

  1. Find X If 2[

] + [

] = [

]

  1. If A = [^1 3 4

] Find A + ๐ด^1

21. A = [

] and B = [^0 2 6 โˆ’3 1

] Find 3A + 2B

  1. if A = [ sin ๐œƒ^ cos ๐œƒ โˆ’cos ๐œƒ sin ๐œƒ

] Verify A A^1 = I

  1. if B = [ cos ๐œƒ sin ๐œƒ โˆ’sin ๐œƒ cos ๐œƒ

] verify B B^1 = I

  1. If A = [

] B = [1 5 7]^ Find AB

  1. Compute 1) [^1 โˆ’ 2 3

] [^1 2

]

2) [

] [

]

  1. Find X and Y [

] = [^6

]

  1. What is the number of possible square matrix order 3 with each entries 0 or 1
  2. Find X and Y if [

] is a scalar matrix

  1. Find X [

] is a symmetric matrix

  1. By using elementary operation Find the inverse of the matrix [^1 2 7

]

  1. By using elementary operation Find the inverse of the matrix [^1 โˆ’ 2 1

]

  1. Find P-1^ if it exists and P = [

]

  1. If A = [^3 โˆ’1 2

] Show that A^2 -5A +7I = 0

  1. If A = [

] and B = [

] Show that (AB)^1 = B^1 A^1

III. Five mark questions ( LA)

1.If A = [

] B = [

] and C =[

]

Find A B , BC and show that (AB )C = A(BC)

  1. If A = [

] B = [

] C = [

] calculate AC, BC and (A+B) C

Deduce that (A+B) C = AC + BC

  1. If A = [

] Show that A^3 โ€“ 23A - 40 I = 0

  1. If A = [

] B = [

] and C = [

]

verify A+ (B-C) = (A+B ) โ€“ C

  1. If A =

[

2 3 1

5 3 1 3

2 3

4 3 7 3 2

2 3 ]

and B =

[

2 5

3 5 1 1 5

2 5

4 5 7 5

6 5

2 5 ]

find 3A โ€“ 5B

  1. If A = [

] find A^2 โ€“ 5 A + 6 I?

  1. If A = [

] prove that A^3 โ€“ 6A^2 + 7A + 2I = 0

  1. Express the matrix B = [

] Find the sum of symmetric and skew-

symmetric matrix

  1. Express the matrix B = [

] Find the sum of symmetric and skew-

symmetric matrix

  1. If A = [

] B = [

] C = [

] calculate AB , BC, A(B+C)

Verify that AB + AC = A(B+C)

  1. If F(x) = [

cos ๐‘ฅ โˆ’ sin ๐‘ฅ 0 sin ๐‘ฅ cos ๐‘ฅ 0 0 0 1

] show that F(x) F(y) = F(x+y)

  1. If A =[

] and B = [1 3 โˆ’6] verify (AB)^1 = B^1 A^1

  1. If A = [ cos ๐œƒ^ sin ๐œƒ โˆ’sin ๐œƒ cos ๐œƒ

] Prove that An^ = [ cos ๐‘›๐œƒ^ sin ๐‘›๐œƒ โˆ’sin ๐‘›๐œƒ cos ๐‘›๐œƒ

]

21. 3 A +2 B = [^3 โˆ’2^19

]

  1. A A^1 = [ sin ๐œƒ^ cos ๐œƒ โˆ’cos ๐œƒ sin ๐œƒ

] [sin ๐œƒ^ โˆ’cos ๐œƒ cos ๐œƒ sin ๐œƒ

] = [^1

] = I after multiplying

  1. BB 1 = [ cos ๐œƒ sin ๐œƒ โˆ’sin ๐œƒ cos ๐œƒ

] [

cos ๐œƒ โˆ’sin ๐œƒ sin ๐œƒ cos ๐œƒ

] = [

]= I after multiplying

24. (AB)^1 = [

]

25. 1) [โˆ’3^ โˆ’4^1

] 2) [^14 โˆ’

] after multiplying

  1. 3 |๐ด| = K |๐ด| implies K = 3
  2. Y = 0, X = 3 by solving
  3. The square matrix of order 3X3 = 9 and 2 entries

Then possible entries is 2^9 = 512

29. [5 โˆ’ ๐‘ฅ^ 2๐‘ฆ โˆ’ 8

]= [^3

] then X = 2 Y = 4

  1. [ 4 ๐‘ฅ + 2 2๐‘ฅ โˆ’ 3 ๐‘ฅ + 1

] = [ 4 2๐‘ฅ โˆ’ 3

] implies X = 5

Solutions : Two mark and Three marks questions (SA)

  1. books pens

Radha : 15 6 this can be expressed as [

] or [^15 10 6 2 5

]

Fauzia : 10 2 Simran: 13 5

[

5 2 1 2 2 0 3 2 ]

  1. X+ Y + Z = 9 X +Z = 5 Y + Z = 7

7 + Z = 9 X + 2 = 5 Y + 2 = 7

Z= 2 X = 3 Y = 5

  1. By solving equality a =1 , b= 2, c =3 and d = 4

5. X =

[

10 3 4 14 3 โˆ’ 31 3

โˆ’ 3 ]

  1. compare two matrices X = 2, Y = 9
  2. by solving we get X = 3 , Y = -
  3. by solving and compare we get X = 2 , Y = 4, Z = 1, w = 3

9. ๐ด๐‘‹ ๐ด๐‘Œ = [

cos ๐‘ฅ sin ๐‘ฅ โˆ’sin ๐‘ฅ cos ๐‘ฅ

] [

cos ๐‘ฆ sin ๐‘ฆ โˆ’sin ๐‘ฆ cos ๐‘ฆ

] = [

cos(๐‘ฅ + ๐‘ฆ) sin(x + ๐‘ฆ) โˆ’sin(๐‘ฅ + ๐‘ฆ) cos(๐‘ฅ + ๐‘ฆ)

] = ๐ด๐‘‹+๐‘Œ

10. A^2 = KA โ€“ 2I

[

] = [

]

Then 4K = 4

K = 1

11. ( A+B)^1 = [

โˆš3 โˆ’ 1^4

] and A^1 + B 1 = [

โˆš3 โˆ’ 1^4

]

Hence ( A+B)^1 = A^1 + B 1

  1. B = A + A^1 , B^1 = (A + A^1 )^1 = A^1 +A = B โˆด B = A +A^1 is symmetric

C = A โ€“ A 1 , C 1 = (A -A^1 )^1 = A^1 -A = -(A- A^1 ) = - C โˆด C = A โ€“ A^1 is skew- symmetric

13. Z = A + A^1 = [

] + [

] = [

] = Z 1 โˆด Z = Z^1 = A + A^1 is symmetric

14. Z^1 = (A - A^1 )^1 = ([

] โˆ’ [

])

1 = ([

] )

1 = -Z โˆด Z^1 = - Z, A โ€“ A^1

skew- symmetric

  1. (AB) (AB)-1^ = I

A-1(AB) (AB)-1^ = A-1I I A = A B(AB)-1^ = A-1^ IA-1^ = A- B-1B(AB)-1^ = B-1A-1^ AA-1^ = I (AB)-1^ = B-1A-1^ BB-1^ I

Solutions : Five mark questions (LA)

1.AB =[

] (AB) C = [

]

BC = [

] A(BC) = [

]

Hence (AB) C = A(BC)

2. (A +B) C = [

] AC = [

] BC = [

] AC + BC = [

]

Hence (A +B) C = AC + BC

3. A = [

] A^2 = [

] A^3 = [

]

LHS = A3 โ€“ 23A โ€“ 40 I = 0 By simplification

4. A + (B โ€“ C) = [

] and (A+B) โ€“ C = [

]

Hence A + (B โ€“ C) = (A+B) โ€“ C

5. 3A -5B = [

] - [

] = [

] = 0

6. A^2 โ€“ 5A + 6I = [

] by simplification

  1. If A = [

] by calculating A^2 , A^3 take LHS = RHS

8. B = [

] by theorem number 2

B =

1 2 (B +B^

2 (B -B^

(^1) ) hence they are equal

9. B = [

] by theorem number 2

B =

1 2 (B +B^

2 (B -B^

(^1) ) hence they are equal

  1. If AB = [

] AC = [

] A(B+C) = [

] = AB + AC

  1. F(x).F(y) = [

cos ๐‘ฅ โˆ’ sin ๐‘ฅ 0 sin ๐‘ฅ cos ๐‘ฅ 0 0 0 1

] [

cos ๐‘ฆ โˆ’ sin ๐‘ฆ 0 sin ๐‘ฆ cos ๐‘ฆ 0 0 0 1

]

= [

cos(๐‘ฅ + ๐‘ฆ) โˆ’ sin(๐‘ฅ + ๐‘ฆ) 0 sin(๐‘ฅ + ๐‘ฆ) cos(๐‘ฅ + ๐‘ฆ) 0 0 0 1

] = F(x+y)

13. LHS = (AB)^1 = [

] = B^1 A^1 = RHS

  1. By mathematical induction we get the solution