Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Finding Reference Angles and Trigonometric Values, Exams of Analytical Geometry and Calculus

Instructions on how to find reference angles for given angles and the trigonometric values of special angles. It includes examples and steps for determining quadrants, reference angles, and values for sine, cosine, tangent, cosecant, secant, and cotangent functions.

What you will learn

  • How do you find the trigonometric values of special angles like 120 degrees, 225 degrees, and 330 degrees?
  • How do you find the reference angle for a given angle?
  • What are the reference angles for 30 degrees, 45 degrees, and 60 degrees?

Typology: Exams

2021/2022

Uploaded on 09/12/2022

explain
explain 🇺🇸

4

(2)

230 documents

1 / 5

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
ReferenceAngles
REFERENCEANGLE
:apositiveacuteanglemadebytheterminalsideof
anangleandthe
x
axis.
QuadrantI QuadrantII QuadrantIII QuadrantIV
  .reference
reference =180
o

θ
Findthereferenceangleforeachgivenangle.
EX1 210
o
EX2 300
o
EX3  240
o
EX4 1035
o
QuadrantIII
210
o
180
o
=30
o
reference
=30
o
QuadrantIV
360
o
300
o
=60
o
reference
=60
o
reference
=60
o
QuadrantII
180
o
 120
o
=60
o
240
o
+360
o
= 120
o
coterminalangle
reference
=45
o
QuadrantIV
360
o
 315
o
=45
o
1035
o
2(360
o
)= 315
o
coterminalangle
reference =
θ
180
o
reference =360
o

θ
pf3
pf4
pf5

Partial preview of the text

Download Finding Reference Angles and Trigonometric Values and more Exams Analytical Geometry and Calculus in PDF only on Docsity!

Reference Angles

REFERENCE ANGLE : a positive acute angle made by the terminal side of

an angle and the x axis. Quadrant I Quadrant IIQuadrant IIIQuadrant IV reference^. reference = 180 o^ θ Find the reference angle for each given angle. EX 1 210 o^ EX 2 300 o^ EX 3 240 o^ EX 4 1035 o Quadrant III 210 o^180 o^ = 30 o reference = 30 o Quadrant IV 360 o^300 o^ = 60 o reference = 60 o^ reference = 60 o Quadrant II 180 o^120 o^ = 60 o 240 o^ + 360 o^ = 120 o coterminal angle reference = 45 o Quadrant IV 360 o^315 o^ = 45 o 1035 o^ 2(360 o) = 315 o coterminal angle reference = (^) θ 180 o^ reference = 360 o^ θ

Quadrant II Quadrant I Quadrant III Quadrant IV reference = 180 o^ θ reference reference = 360 o^ θ θ Reference Angle 30 o^30 o 45 o^45 o 60 o^60 o θ Reference Angle 120 o^60 o 135 o^45 o 150 o^30 o reference = (^) θ 180 o θ Reference Angle 210 o^30 o 225 o^45 o 240 o^60 o θ Reference Angle 300 o^60 o 315 o^45 o 330 o^30 o

If the degree ends in a 5 , then it has a reference angle of 45

o .

If the degree's middle number is ODD, then it has a reference angle of 30

o .

If the degree's middle number is EVEN, then it has a reference angle of 60

o .

All Students Take Classes Step 1: Determine what quadrant the angle is in. Step 2: Determine whether or not the value will be positive or negative. Step 3: Find the reference angle (30o, 45 o, 60 o). Step 4: Determine the value for the given reference angle. Finding the Trigonometric Values of Special Angles EX 8 csc 60 o^ EX 9 sec 210 o^ EX 10 cot 135 o

Finding Angle Measures Given Trigonometric Function Values Step 1: Find the quadrants of the trigonometric function by its charge. Step 2: Find the reference angle by the function value. Step 3: Use the reference angle to find its angle measure, , in the interval of [0o, 360 o]. EX 11 EX 12 EX 13 EX 14