Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Fitch Proofs: Logic Exercises, Study notes of Computer Science

A collection of fitch proofs for various logic exercises, including propositional logic and first-order logic. Each proof is presented step by step, with the goal, assumptions, and inference rules clearly stated.

Typology: Study notes

Pre 2010

Uploaded on 09/02/2009

koofers-user-5eh
koofers-user-5eh 🇺🇸

10 documents

1 / 16

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Fr i Feb 27 22:27:47 EST 2004 Fi tch: probl emMi nus2.prf 1
1. P Q ; reminder of proof of resolution step
2. ¬P
3. P
4. Intro 2,3
5. Q Elim 4
6. Q
7. QReit 6
8. Q Elim 1,3-5,6-7
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff

Partial preview of the text

Download Fitch Proofs: Logic Exercises and more Study notes Computer Science in PDF only on Docsity!

Fri Feb 27 22:27:47 EST 2004 Fitch: problemMinus2.prf 1

P

Q ; reminder of proof of resolution step

¬P

P

Intro

2,

Q

Elim

4

Q

Q

Reit

6

Q

Elim

1,3-5,6-

Fri Feb 27 22:12:55 EST 2004 Fitch: Untitled 3 1

¬(P

Q)

¬( ¬P

¬Q)

P

P

Q

Intro

3

Intro

1,

¬P

¬ Intro

3-

Q

P

Q

Intro

7

Intro

1,

¬Q

¬ Intro

7-

¬P

¬Q

Intro

6,

Intro

2,

¬P

¬Q

¬ Intro

2-

Mon Mar 01 18:29:53 EST 2004 Fitch: Proof Quantifier Strategy 1.prf 1

x P(x)

x ¬P(x)

  1. c

¬P(c)

x ¬P(x)

Intro

4

Intro

2,

¬¬P(c)

¬ Intro

4-

P(c)

¬ Elim

7

x P(x)

Intro

3-

Intro

1,

x ¬P(x)

¬ Intro

2-

x ¬P(x)

¬ Elim

11

Goals

x ¬P(x)

Tue Feb 24 20:52:37 EST 2004 Fitch: Untitled 1 1

x (P(x) ∧

Q(x))

  1. a P(a) ∧

Q(a)

  1. P(a) ∧

Elim 2

  1. Q(a) ∧

Elim 2

x P(x) ∃

Intro 3

x Q(x) ∃

Intro 4

x P(x) ∧ ∃

x Q(x) ∧

Intro 5,

x P(x) ∧ ∃

x Q(x) ∃

Elim 1,2-

Tue Feb 24 22:10:51 EST 2004 Fitch: Untitled 3 1

x F(x) ∨ ∀

x G(x)) ; premise not needed. goal is logically nec

x F(x) ∨ ∀

x G(x)

x F(x)

  1. a
  2. F(a) ∀

Elim 3

  1. F(a) ∨

G(a) ∨

Intro 5

x (F(x) ∨

G(x)) ∀

Intro 4-

x G(x)

  1. b
  2. G(b) ∀

Elim 8

  1. F(b) ∨

G(b) ∨

Intro 10

x (F(x) ∨

G(x)) ∀

Intro 9-

x (F(x) ∨

G(x)) ∨

Elim 2,3-7,8-

x F(x) ∨ ∀

x G(x)) → ∀

x (F(x) ∨

G(x)) →

Intro 2-

Tue Feb 24 22:44:04 EST 2004 Fitch: Untitled 4 1

x (F(x) →

¬(G(x) ∨

H(x)))

x (F(x) ∧

H(x))

  1. a F(a) ∧

H(a)

  1. F(a) →

¬(G(a) ∨

H(a)) ∀

Elim 1

  1. F(a) ∧

Elim 3

  1. ¬(G(a) ∨

H(a)) →

Elim 4,

  1. ¬G(a) ∧

¬H(a) Taut Con 6

  1. H(a) ∧

Elim 3

  1. ¬H(a) ∧

Elim 7

⊥ ⊥

Intro 9,

⊥ ∃

Elim 2,3-

x (F(x) ∧

H(x)) ¬ Intro 2-

Fri Feb 27 21:11:10 EST 2004 Fitch: Problem6.prf 1

x F(x)

x(G(x)

H(x))

x (F(x)

¬G(x))

x H(x)

x F(x)

x (G(x)

H(x))

FO Con

1

x F(x)

x F(x)

Reit

5

x (G(x)

H(x))

  1. a

G(a)

H(a)

Elim

7

x ¬H(x)

FO Con

3

¬H(a)

Elim

10

G(a)

Taut Con

9,

F(a)

¬G(a)

Elim

2

¬F(a)

¬G(a)

FO Con

13

¬F(a)

Taut Con

12,

x ¬F(x)

Intro

8-

x F(x)

FO Con

16

x F(x)

Elim

4,5-6,7-

x ¬F(x)

FO Con

18

x H(x)

x ¬F(x)

Intro

3-

Tue Mar 02 10:55:21 EST 2004 Fitch: problem7.prf 1

x (Teacher(x) ∧

Scholar(x))

x (Scholar(x) →

¬(HasTime(x,football) ∨

HasTime(x,basketball)))

  1. a Teacher(a) ∧

Scholar(a)

  1. Scholar(a) ∧

Elim 3

  1. Scholar(a) →

¬(HasTime(a, football) ∨

HasTime(a, basketball))

Elim 2

  1. ¬(HasTime(a, football) ∨

HasTime(a, basketball)) →

Elim 4,

  1. ¬HasTime(a,football) ∧

¬HasTime(a,basketball) Taut Con 6

  1. ¬HasTime(a,basketball) ∧

Elim 7

  1. Teacher(a) ∧

Elim 3

  1. Teacher(a) ∧

¬HasTime(a, basketball) ∧

Intro 8,

x (Teacher(x) ∧

¬HasTime(x, basketball)) ∃

Intro 10

x (Teacher(x) ∧

¬HasTime(x,basketball)) ∃

Elim 1,3-

  • problem8world.wld Page 1 of 1 03/02/

problem9sentences.sen Page 1 of 1 03/02/

T 1. ∀x (∀y LeftOf(x, y) → Large(x))

T 2. ∀x (∃y ¬LeftOf(x, y) ∨ Large(x)) ; 2 is FO-equivalent to 1 F 3. ∀x ∀y (LeftOf(x, y) → Large(x))

Thu Mar 04 15:03:19 EST 2004 Fitch: bicondallintro.prf 1

x (P(x) →

Q(x))

x (Q(x) →

P(x))

  1. a
    1. P(a)
    2. P(a) →

Q(a) ∀

Elim 1

  1. Q(a) →

Elim 4,

  1. Q(a)
  2. Q(a) →

P(a) ∀

Elim 2

  1. P(a) →

Elim 7,

  1. P(a) ↔

Q(a) ↔

Intro 4-6,7-

x (P(x) ↔

Q(x)) ∀

Intro 3-