









Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
A collection of fitch proofs for various logic exercises, including propositional logic and first-order logic. Each proof is presented step by step, with the goal, assumptions, and inference rules clearly stated.
Typology: Study notes
1 / 16
This page cannot be seen from the preview
Don't miss anything!
Fri Feb 27 22:27:47 EST 2004 Fitch: problemMinus2.prf 1
Intro
2,
Elim
4
Reit
6
Elim
1,3-5,6-
Fri Feb 27 22:12:55 EST 2004 Fitch: Untitled 3 1
Intro
3
Intro
1,
¬ Intro
3-
Intro
7
Intro
1,
¬ Intro
7-
Intro
6,
Intro
2,
¬ Intro
2-
Mon Mar 01 18:29:53 EST 2004 Fitch: Proof Quantifier Strategy 1.prf 1
c
Intro
4
Intro
2,
¬ Intro
4-
¬ Elim
7
Intro
3-
Intro
1,
¬ Intro
2-
¬ Elim
11
Goals
Tue Feb 24 20:52:37 EST 2004 Fitch: Untitled 1 1
∃
x (P(x) ∧
Q(x))
Q(a)
Elim 2
Elim 2
∃
x P(x) ∃
Intro 3
∃
x Q(x) ∃
Intro 4
∃
x P(x) ∧ ∃
x Q(x) ∧
Intro 5,
∃
x P(x) ∧ ∃
x Q(x) ∃
Elim 1,2-
Tue Feb 24 22:10:51 EST 2004 Fitch: Untitled 3 1
x F(x) ∨ ∀
x G(x)) ; premise not needed. goal is logically nec
∀
x F(x) ∨ ∀
x G(x)
∀
x F(x)
Elim 3
G(a) ∨
Intro 5
∀
x (F(x) ∨
G(x)) ∀
Intro 4-
∀
x G(x)
Elim 8
G(b) ∨
Intro 10
∀
x (F(x) ∨
G(x)) ∀
Intro 9-
∀
x (F(x) ∨
G(x)) ∨
Elim 2,3-7,8-
x F(x) ∨ ∀
x G(x)) → ∀
x (F(x) ∨
G(x)) →
Intro 2-
Tue Feb 24 22:44:04 EST 2004 Fitch: Untitled 4 1
∀
x (F(x) →
¬(G(x) ∨
H(x)))
∃
x (F(x) ∧
H(x))
H(a)
¬(G(a) ∨
H(a)) ∀
Elim 1
Elim 3
H(a)) →
Elim 4,
¬H(a) Taut Con 6
Elim 3
Elim 7
⊥ ⊥
Intro 9,
⊥ ∃
Elim 2,3-
x (F(x) ∧
H(x)) ¬ Intro 2-
Fri Feb 27 21:11:10 EST 2004 Fitch: Problem6.prf 1
FO Con
1
Reit
5
a
Elim
7
FO Con
3
Elim
10
Taut Con
9,
Elim
2
FO Con
13
Taut Con
12,
Intro
8-
FO Con
16
Elim
4,5-6,7-
FO Con
18
Intro
3-
Tue Mar 02 10:55:21 EST 2004 Fitch: problem7.prf 1
∃
x (Teacher(x) ∧
Scholar(x))
∀
x (Scholar(x) →
¬(HasTime(x,football) ∨
HasTime(x,basketball)))
Scholar(a)
Elim 3
¬(HasTime(a, football) ∨
HasTime(a, basketball))
Elim 2
HasTime(a, basketball)) →
Elim 4,
¬HasTime(a,basketball) Taut Con 6
Elim 7
Elim 3
¬HasTime(a, basketball) ∧
Intro 8,
∃
x (Teacher(x) ∧
¬HasTime(x, basketball)) ∃
Intro 10
∃
x (Teacher(x) ∧
¬HasTime(x,basketball)) ∃
Elim 1,3-
problem9sentences.sen Page 1 of 1 03/02/
T 2. ∀x (∃y ¬LeftOf(x, y) ∨ Large(x)) ; 2 is FO-equivalent to 1 F 3. ∀x ∀y (LeftOf(x, y) → Large(x))
Thu Mar 04 15:03:19 EST 2004 Fitch: bicondallintro.prf 1
∀
x (P(x) →
Q(x))
∀
x (Q(x) →
P(x))
Q(a) ∀
Elim 1
Elim 4,
P(a) ∀
Elim 2
Elim 7,
Q(a) ↔
Intro 4-6,7-
∀
x (P(x) ↔
Q(x)) ∀
Intro 3-