

















Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
Material Type: Notes; Class: Seminar in Applied Mathematics; Subject: Mathematics; University: Illinois Institute of Technology; Term: Summer 2009;
Typology: Study notes
1 / 25
This page cannot be seen from the preview
Don't miss anything!
http://math.iit.edu/~ahaque
ahaque7@iit.edu
๎
Finite Difference Stencils
๎
Consistency
๎
Stability
๎
Convergence
Order symbols are used to compare the relative behavior of
two functions and as
is (โBig Oโ) if
is (โLittle oโ) if
We will mainly use โBig Oโ notation
O ๎ g ๎ x๎๎
lim
x ๎ a
f ๎ x๎
g ๎ x๎
f ๎ x๎
o๎ g ๎ x๎๎
lim
x ๎ a
f ๎ x๎
g ๎ x๎
g ๎ x๎
f ๎ x๎
f ๎ x๎
x ๎ a
f ' ๎ x
i
f ๎ x
i๎ 1
๎โ f ๎ x
i
๎ญ x
๎O ๎๎ญ x๎
๎ญ x=x
i๎ 1
โx
i
,โ i
f ' ๎ x
i
f ๎ x
i
๎โ f ๎ x
iโ 1
๎ญ x
๎O ๎๎ญ x๎
f ' ๎ x
i
f ๎ x
i๎ 1
๎โ f ๎ x
iโ 1
2 ๎ญ x
๎O ๎๎๎ญ x๎
2
๎
We need approximations for 1
st
derivatives
Forward
Difference
Backward
Difference
Centered
Difference
i
n๎ 1
i
n
๎ญ t
2 ๎ญ x
๎
i๎ 1
n
iโ 1
n
๎
Unstable! (i.e. Useless)
x
i
x
i๎ 1
x
iโ 1
x
i๎ 2
x
iโ 2
t
n๎ 1
t
n๎ 2
t
n
๎ญ x
๎ญ t
i
n๎ 1
i
n
๎ญ t
2 ๎ญ x
๎
i๎ 1
n๎ 1
iโ 1
n๎ 1
๎
x
i
x
i๎ 1
x
iโ 1
x
i๎ 2
x
iโ 2
t
n๎ 1
t
n๎ 2
t
n
๎ญ x
๎ญ t
Implicit (i.e. Requires Matrix Solves)
i
n๎ 1
i
n
๎ญt
๎ญ x
๎
i๎ 1
n
i
n
๎
x
i
x
i๎ 1
x
iโ 1
x
i๎ 2
x
iโ 2
t
n๎ 1
t
n๎ 2
t
n
๎ญ x
๎ญ t
Stability depends on A
i
n๎ 1
i
nโ 1
๎ญ t
๎ญ x
๎
i๎ 1
n
iโ 1
n
๎
x
i
x
i๎ 1
x
iโ 1
x
i๎ 2
x
iโ 2
t
n
t
n๎ 1
t
nโ 1
๎ญ x
๎ญ t
3-Level Method
i
n๎ 1
i
n
๎ญ t
2 ๎ญ x
๎
i๎ 1
n
iโ 1
n
๎
๎๎ญ t ๎
2
2 ๎๎ญ x๎
2
2
๎
i๎ 1
n
i
n
iโ 1
n
๎
x
i
x
i๎ 1
x
iโ 1
x
i๎ 2
x
iโ 2
t
n๎ 1
t
n๎ 2
t
n
๎ญ x
๎ญ t
x
i
x
i๎ 1
x
iโ 1
x
i๎ 2
x
iโ 2
t
n๎ 1
t
n๎ 2
t
n
๎ญ x
๎ญ t
๎๎ญ t ๎
2
2 ๎๎ญ x๎
2
2
๎
i
n
iโ 1
n
iโ 2
n
๎
i
n๎ 1
i
n
๎ญ t
2 ๎ญ x
๎
i
n
iโ 1
n
iโ 2
n
๎
Norm Continuous Variable Discrete Points Comments
Infinity Inappropriate
Sup
1 Natural
2 Fourier
Analysis
We will only use the 1-Norm
โฅuโฅ
1
โซ
โฅuโฅ
2
[โซ
u
2
๎ x๎ dx
]
1
2
โฅuโฅ
โ
= max
x
โ
= max
i
โฃ
u
i
โฃ
โฅuโฅ
1
=h
โ
i
โฃ
u
i
โฃ
โฅuโฅ
2
[
h
โ
i
u
i
2
]
1
2
k
๎ x , t๎=
k
[
u ๎ x , t๎k ๎โ H
k
๎u ๎: ,t ๎ ; x๎
]
Local truncation error is obtained by plugging the actual
solution or into the finite difference method
For a 2-level method, local truncation error is defined as
The method is consistent if
lim
k ๎ 0
k
๎: ,t ๎โฅ= 0
k
n
k
[
n๎ 1
k
n
]
lim
k ๎ 0
k
n
u๎ x ,t ๎ V
n
An initial value problem is stable if
A finite difference method is stable if
Alternative relations are
โฅu๎ x ,t ๎โฅโคC e
๎ท t
โฅu๎ x , 0 ๎โฅ
n
โฅโคC e
๎ท k n
0
k
โฅโค 1 ๎๎ท k , โ k ๎k
0
k
n
โฅโค๎ 1 ๎๎ท k ๎
n
โคe
๎ท k n
, โ k๎k
0
A linear finite difference method that is stable and
accurate of order (p,q) is convergent of order (p,q)
Linear + Consistency + Stability -> Convergence!