Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Review of Finite Difference Methods | MATH 593, Study notes of Mathematics

Material Type: Notes; Class: Seminar in Applied Mathematics; Subject: Mathematics; University: Illinois Institute of Technology; Term: Summer 2009;

Typology: Study notes

Pre 2010

Uploaded on 08/18/2009

koofers-user-6ma-1
koofers-user-6ma-1 ๐Ÿ‡บ๐Ÿ‡ธ

10 documents

1 / 25

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Numerical Methods for Hyperbolic
Conservation Laws
Review of Finite Difference Methods
Dr. Aamer Haque
http://math.iit.edu/~ahaque6
ahaque7@iit.edu
Illinois Institute of Technology
June 11, 2009
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17
pf18
pf19

Partial preview of the text

Download Review of Finite Difference Methods | MATH 593 and more Study notes Mathematics in PDF only on Docsity!

Numerical Methods for Hyperbolic

Conservation Laws

Review of Finite Difference Methods

Dr. Aamer Haque

http://math.iit.edu/~ahaque

ahaque7@iit.edu

Illinois Institute of Technology

June 11, 2009

Outline

๎€Š

Finite Difference Stencils

๎€Š

Consistency

๎€Š

Stability

๎€Š

Convergence

Order Symbols

Order symbols are used to compare the relative behavior of

two functions and as

is (โ€œBig Oโ€) if

is (โ€œLittle oโ€) if

We will mainly use โ€œBig Oโ€ notation

O ๎‚ž g ๎‚ž x๎‚Ÿ๎‚Ÿ

lim

x ๎‚Œ a

f ๎‚ž x๎‚Ÿ

g ๎‚ž x๎‚Ÿ

=Lโ‰  0

f ๎‚ž x๎‚Ÿ

o๎‚ž g ๎‚ž x๎‚Ÿ๎‚Ÿ

lim

x ๎‚Œ a

f ๎‚ž x๎‚Ÿ

g ๎‚ž x๎‚Ÿ

g ๎‚ž x๎‚Ÿ

f ๎‚ž x๎‚Ÿ

f ๎‚ž x๎‚Ÿ

x ๎‚Œ a

Basic Finite Differences

f ' ๎‚ž x

i

f ๎‚ž x

i๎‚ƒ 1

๎‚Ÿโˆ’ f ๎‚ž x

i

๎‚ญ x

๎‚ƒO ๎‚ž๎‚ญ x๎‚Ÿ

๎‚ญ x=x

i๎‚ƒ 1

โˆ’x

i

,โˆ€ i

f ' ๎‚ž x

i

f ๎‚ž x

i

๎‚Ÿโˆ’ f ๎‚ž x

iโˆ’ 1

๎‚ญ x

๎‚ƒO ๎‚ž๎‚ญ x๎‚Ÿ

f ' ๎‚ž x

i

f ๎‚ž x

i๎‚ƒ 1

๎‚Ÿโˆ’ f ๎‚ž x

iโˆ’ 1

2 ๎‚ญ x

๎‚ƒO ๎‚ž๎‚ž๎‚ญ x๎‚Ÿ

2

๎‚Ÿ

We need approximations for 1

st

derivatives

Forward

Difference

Backward

Difference

Centered

Difference

Forward Euler

U

i

n๎‚ƒ 1

=U

i

n

๎‚ญ t

2 ๎‚ญ x

A

๎‚ž

U

i๎‚ƒ 1

n

โˆ’U

iโˆ’ 1

n

๎‚Ÿ

Unstable! (i.e. Useless)

x

i

x

i๎‚ƒ 1

x

iโˆ’ 1

x

i๎‚ƒ 2

x

iโˆ’ 2

t

n๎‚ƒ 1

t

n๎‚ƒ 2

t

n

๎‚ญ x

๎‚ญ t

Backward Euler

U

i

n๎‚ƒ 1

=U

i

n

๎‚ญ t

2 ๎‚ญ x

A

๎‚ž

U

i๎‚ƒ 1

n๎‚ƒ 1

โˆ’U

iโˆ’ 1

n๎‚ƒ 1

๎‚Ÿ

x

i

x

i๎‚ƒ 1

x

iโˆ’ 1

x

i๎‚ƒ 2

x

iโˆ’ 2

t

n๎‚ƒ 1

t

n๎‚ƒ 2

t

n

๎‚ญ x

๎‚ญ t

Implicit (i.e. Requires Matrix Solves)

Right One-Sided

U

i

n๎‚ƒ 1

=U

i

n

๎‚ญt

๎‚ญ x

A

๎‚ž

U

i๎‚ƒ 1

n

โˆ’U

i

n

๎‚Ÿ

x

i

x

i๎‚ƒ 1

x

iโˆ’ 1

x

i๎‚ƒ 2

x

iโˆ’ 2

t

n๎‚ƒ 1

t

n๎‚ƒ 2

t

n

๎‚ญ x

๎‚ญ t

Stability depends on A

Leapfrog

U

i

n๎‚ƒ 1

=U

i

nโˆ’ 1

๎‚ญ t

๎‚ญ x

A

๎‚ž

U

i๎‚ƒ 1

n

โˆ’U

iโˆ’ 1

n

๎‚Ÿ

x

i

x

i๎‚ƒ 1

x

iโˆ’ 1

x

i๎‚ƒ 2

x

iโˆ’ 2

t

n

t

n๎‚ƒ 1

t

nโˆ’ 1

๎‚ญ x

๎‚ญ t

3-Level Method

Lax-Wendroff

U

i

n๎‚ƒ 1

=U

i

n

๎‚ญ t

2 ๎‚ญ x

A

๎‚ž

U

i๎‚ƒ 1

n

โˆ’U

iโˆ’ 1

n

๎‚Ÿ

๎‚ž๎‚ญ t ๎‚Ÿ

2

2 ๎‚ž๎‚ญ x๎‚Ÿ

2

A

2

๎‚ž

U

i๎‚ƒ 1

n

โˆ’ 2 U

i

n

๎‚ƒU

iโˆ’ 1

n

๎‚Ÿ

x

i

x

i๎‚ƒ 1

x

iโˆ’ 1

x

i๎‚ƒ 2

x

iโˆ’ 2

t

n๎‚ƒ 1

t

n๎‚ƒ 2

t

n

๎‚ญ x

๎‚ญ t

Beam-Warming

x

i

x

i๎‚ƒ 1

x

iโˆ’ 1

x

i๎‚ƒ 2

x

iโˆ’ 2

t

n๎‚ƒ 1

t

n๎‚ƒ 2

t

n

๎‚ญ x

๎‚ญ t

๎‚ž๎‚ญ t ๎‚Ÿ

2

2 ๎‚ž๎‚ญ x๎‚Ÿ

2

A

2

๎‚ž

U

i

n

โˆ’ 2 U

iโˆ’ 1

n

๎‚ƒU

iโˆ’ 2

n

๎‚Ÿ

U

i

n๎‚ƒ 1

=U

i

n

๎‚ญ t

2 ๎‚ญ x

A

๎‚ž

3 U

i

n

โˆ’ 4 U

iโˆ’ 1

n

๎‚ƒU

iโˆ’ 2

n

๎‚Ÿ

Norm Continuous Variable Discrete Points Comments

Infinity Inappropriate

Sup

1 Natural

2 Fourier

Analysis

Norms

We will only use the 1-Norm

โˆฅuโˆฅ

1

โˆซ

โˆฃu๎‚ž x๎‚Ÿโˆฃdx

โˆฅuโˆฅ

2

[โˆซ

u

2

๎‚ž x๎‚Ÿ dx

]

1

2

โˆฅuโˆฅ

โˆž

= max

x

โˆฃu๎‚ž x๎‚Ÿโˆฃ โˆฅuโˆฅ

โˆž

= max

i

โˆฃ

u

i

โˆฃ

โˆฅuโˆฅ

1

=h

โˆ‘

i

โˆฃ

u

i

โˆฃ

โˆฅuโˆฅ

2

[

h

โˆ‘

i

u

i

2

]

1

2

Local Truncation Error & Consistency

L

k

๎‚ž x , t๎‚Ÿ=

k

[

u ๎‚ž x , t๎‚ƒk ๎‚Ÿโˆ’ H

k

๎‚žu ๎‚ž: ,t ๎‚Ÿ ; x๎‚Ÿ

]

Local truncation error is obtained by plugging the actual

solution or into the finite difference method

For a 2-level method, local truncation error is defined as

The method is consistent if

lim

k ๎‚Œ 0

โˆฅL

k

๎‚ž: ,t ๎‚Ÿโˆฅ= 0

L

k

n

k

[

V

n๎‚ƒ 1

โˆ’ H

k

V

n

]

lim

k ๎‚Œ 0

โˆฅL

k

n

u๎‚ž x ,t ๎‚Ÿ V

n

Stability

An initial value problem is stable if

A finite difference method is stable if

Alternative relations are

โˆฅu๎‚ž x ,t ๎‚Ÿโˆฅโ‰คC e

๎‚ท t

โˆฅu๎‚ž x , 0 ๎‚Ÿโˆฅ

โˆฅU

n

โˆฅโ‰คC e

๎‚ท k n

โˆฅU

0

โˆฅ H

k

โˆฅโ‰ค 1 ๎‚ƒ๎‚ท k , โˆ€ k ๎‚„k

0

โˆฅ H

k

n

โˆฅโ‰ค๎‚ž 1 ๎‚ƒ๎‚ท k ๎‚Ÿ

n

โ‰คe

๎‚ท k n

, โˆ€ k๎‚„k

0

Lax Equivalence Theorem

A linear finite difference method that is stable and

accurate of order (p,q) is convergent of order (p,q)

Linear + Consistency + Stability -> Convergence!