
























Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
An overview of crystal structural properties, including miller indexes for crystalline directions and planes, spacing of equivalent planes, and bragg's law. It also covers energy gaps in solids, derived from the scattering of periodic potentials, and discusses the atomic origins of energy bands and their relation to metals, insulators, and semiconductors.
Typology: Schemes and Mind Maps
1 / 32
This page cannot be seen from the preview
Don't miss anything!
Disclaimer: This file is meant to help students to learn the materials. It does not imply
that the final exam will be limited to the contents covered here. It is important to
review all HWs, sim labs, quizzes, previous exams, and other course materials.
Crystal Structural Properties
, 1 4 , 3 , 2
2 2 2
0
h k l
a
d
2 d sin n , n 1 , 2 , 3 ,
1/
1
1
1/
Crystal Planes and Directions
Crystal Planes and Directions
t
i
x t x e
( , ) ( )
( ) ( ) ( )
( )
V x x E x
dx
d x
m
2
2 2
2
t
x t
x t V x t i
dx
d
m
( , )
( , ) ( , )
2
2 2
2
( x , t ) ( x ) w ( t )
group particle
particle
phase
Electron in a Quantum Well
2
2
2
2
2
mE
k
k x
dx
d x
0
2
2
2
2
2
mV E
x
dx
d x
2
2
2
2
2
mV E
x
dx
d x
ikx ikx
x x
x x
( x ) finite 1
0 0
1 2
1 0 2 0
x x x x
x x
x x x x
( ) ( )
( a ) ik ( a ) ik ( a )
( a ) ik ( a ) ik ( a )
ika ika a
ika ika a
0
Electron in a Quantum Well
2
2
2
2
2 2
2
mE
k
k x
dx
d x
2
2
1
2
1 2
2
mE V
k
k x
dx
d x
ikx ikx
ik x ik x
1 1
ik x ikx
1 1
( x ) finite 1
0 0
1 2
1 0 2 0
x x x x
x x
x x x x
( ) ( )
( ) ( ) ( ) ( ) 1 1 2 2 ik a ik a ik a ik a
ika ika ika ika
1 1
0
2
2
1
2
1 2
2
m E V
k
k x
dx
d x
Yes. But not useful.
( )
2
( )
2
( )
1
( )
1
1 1 2 2
ik a ik a ik a ik a
ika ika ika ika
1 1
1 1
By adding symmetry requirement and the normalization condition, all parameters can be determined.
Potential: Periodic
Wavefunction: Bloch Theorem
Key conclusions: i) There are
bandgaps!!!! ii) 2N electronic
states in a band
Dispersion relation
Brillouin Zones (optional)
Electron effective mass
Explanation of insulators and
metals
Holes
0
DOS Distribution Functions Occupied DOS
3 1/
2 3
g E ( ) (2 m E )
1
1
exp[( )/ ]
( , )
E E k T
f E T
F B
( )
( ) ( )
exp[( ) / ] 1 F B
g E
g E f E
E E k T
1
1
1
exp[( )/ ]
( , )
E E k T
f E T
F B
*3 1/
2 3
c e g
*3 1/
2 3
v h v
g E m E E
ρ(E)
E
E c = E g
E v
= 0
g c (E)
g v (E)
Eg
1
1
exp[( )/ ]
( , )
E E k T
f E T
F B
E c
E v
HOLES
ELECTRONS
0.
E F
E
f ( E )
0 K
600 K
6000 K
(^01)
( )
( ) ( ) ( )
exp[( ) / ] 1
occ (^) e
e e
F B
g E
g E g E f E
E E k T
exp[( ) / ] 1
occ
v v
v
F B
g E g E f E
g E
E E k T
( ) ln
e
h
B
g
F
m
m
k T
)* 13. 6 ( )
( 2
0
eV
m
m
E E
r
c D
0 0
0 D A
p n N N
D D D
A A A
Number of ionized acceptors
2
0 0
exp
g
i c v
B
E
n p n N N
k T
0 0
g
i c v
B
**For HEAVY doping and FULL ionization of dopants, the position of the Fermi energy in**
the gap varies as
A D i
i
A
F i B
E E k T
ln ,
D A i
i
D
F i B
E E k T
ln ,
D D A A
1/ 2 2
2
0
0
2 2
i A D A D
i
n N N N N
p p n
n
(^)
1/ 2
2
0
2 2
D A D A
i
N N N N
n n N
^
(^)
3/
( )/
(^0 )
1 2
,
4
F c B E E k T (^) e B
c c
m k T
n n N e N
3/ 2
( )/
(^0 )
1 2
,
4
v F B E E k T (^) h B
v v
m k T
p p N e N
e edrift ediffusion e e e e
h hdrift hdiffusion h h h h
e N eD N
e N eD N
J J J E
J J J E
h diff h h ediff e^ e
J eD N J eD N
h drift hdiffusion edrift e diffusion
n p
n p
Potential
energy
-x x p x n
p-TYPE n-TYPE
DEPLETION
REGION
V(x)
2
2
B A D D A
bi
i D A
e n N N
N d
-N a
-x p
x n
- - -
+ + +
E v
E c FERMI LEVEL E F
p-TYPE
REGION
n-TYPE
REGION
eV bi
a p d n
N x N x
ChargeNeutralityRequires :
A
x p
D
x n
1/
bi
A D
e N N