Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Russell's Theory of Descriptions, Study notes of Philosophy

Russell's theory of descriptions describes in denoting phrases and names, the three puzzles of on denoting and objections to Russel,s theory.

Typology: Study notes

2021/2022

Uploaded on 03/31/2022

thehurts
thehurts 🇺🇸

4.5

(11)

219 documents

1 / 11

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Russell’s theory of descriptions
PHIL 83104
September 5, 2011
1. ...........................................................................................Denoting phrases and names 1
2. ................................................................................Russell’s theory of denoting phrases 3
2.1. Prop ositions and propositional functions
2.2. Indefinite descriptions
2.3. Definite descriptions
3. ..................................................................................The three puzzles of ‘On denoting’ 7
3.1. The substitution of identicals
3.2. The law of the excluded middle
3.3. The problem of negative existentials
4. .......................................................................................Objections to Russell’s theory 11
4.1. Incomplete definite descriptions
4.2. Referential uses of definite descriptions
4.3. Other uses of ‘the’: generics
4.4. The contrast between descriptions and names
[The main reading I gave you was Russell’s 1919 paper, “Descriptions,” which is in some
ways clearer than his classic exposition of the theory of descriptions, which was in his
1905 paper “On Denoting.” The latter is one of the optional readings on the web site, and
I reference it below sometimes as well.]
1. DENOTING PHRASES AND NAMES
Russell defines the class of denoting phrases as follows:
“By ‘denoting phrase’ I mean a phrase such as any one of the following: a
man, some man, any man, every man, all men, the present king of England,
the centre of mass of the Solar System at the first instant of the twentieth
century, the revolution of the earth around the sun, the revolution of the sun
around the earth. Thus a phrase is denoting solely in virtue of its form.” (‘On
Denoting’, 479)
Russell’s aim in this article is to explain how expressions like this work — what they
contribute to the meanings of sentences containing them.
A natural first thought in the construction of a theory of denoting phrases is that they
work in much the same way as names like ‘Bob’. Both indefinite descriptions (which
Russell sometimes calls ‘ambiguous descriptions’), like ‘a man’, and definite descriptions,
pf3
pf4
pf5
pf8
pf9
pfa

Partial preview of the text

Download Russell's Theory of Descriptions and more Study notes Philosophy in PDF only on Docsity!

Russell’s theory of descriptions

PHIL 83104

September 5, 2011

  1. Denoting phrases and names ........................................................................................... 1
  2. Russell’s theory of denoting phrases................................................................................ 3 2.1. Propositions and propositional functions 2.2. Indefinite descriptions 2.3. Definite descriptions
  3. The three puzzles of ‘On denoting’.................................................................................. 7 3.1. The substitution of identicals 3.2. The law of the excluded middle 3.3. The problem of negative existentials
  4. Objections to Russell’s theory ....................................................................................... 11 4.1. Incomplete definite descriptions 4.2. Referential uses of definite descriptions 4.3. Other uses of ‘the’: generics 4.4. The contrast between descriptions and names [The main reading I gave you was Russell’s 1919 paper, “Descriptions,” which is in some ways clearer than his classic exposition of the theory of descriptions, which was in his 1905 paper “On Denoting.” The latter is one of the optional readings on the web site, and I reference it below sometimes as well.]

1. DENOTING PHRASES AND NAMES

Russell defines the class of denoting phrases as follows: “By ‘denoting phrase’ I mean a phrase such as any one of the following: a man, some man, any man, every man, all men, the present king of England, the centre of mass of the Solar System at the first instant of the twentieth century, the revolution of the earth around the sun, the revolution of the sun around the earth. Thus a phrase is denoting solely in virtue of its form.” (‘On Denoting’, 479) Russell’s aim in this article is to explain how expressions like this work — what they contribute to the meanings of sentences containing them. A natural first thought in the construction of a theory of denoting phrases is that they work in much the same way as names like ‘Bob’. Both indefinite descriptions (which Russell sometimes calls ‘ambiguous descriptions’), like ‘a man’, and definite descriptions,

like ‘the tallest man in this room’ seem to play the same grammatical role as proper names; just as we can say Bob is happy. we can say A man is happy. The tallest man in this room is happy. This, as we have seen, was Frege’s view; it was also the view of Russell in his earlier work, The Principles of Mathematics. One problem with this simple view is that denoting phrases can clearly make sense even if they do not stand for anything. If I say, for example, The King of France is spoiled. I have succeeded in saying something even though there is no King of France. And I can even say true things of this form, as when I say The King of France does not exist. It is tempting to explain the truth of this sentence by saying that there must be, in some sense, a King of France — something which does not exist. To this sort of view, Russell objects: “It is argued, e.g. by Meinong, that we can speak about ‘the golden mountain’, ‘the round square’, and so on; we can make true propositions of which these are the subjects; hence they must have some kind of logical being, since otherwise the propositions in which they occur would be meaningless. In such theories, it seems to me, there is a failure of that feeling for reality which ought to be preserved even in the most abstract studies. Logic, I should maintain, must no more admit a unicorn than zoology can; for logic is concerned with the real world just as truly as zoology, though with its more abstract and general features. To say that unicorns have an existence in heraldry, or in literature, or in imagination, is a most pitiful and paltry evasion. What exists in heraldry is not an animal, made of flesh and blood, moving and breathing of its own initiative. What exists is a picture, or a description in words. Similarly, to maintain that Hamlet, for example, exists in his own world, namely, in the world of Shakespeare’s imagination, just as truly as (say) Napoleon existed in the ordinary world, is to say something deliberately confusing, or else confused to a degree which is

Think about the proposition which ascribes to you the property of being human. This proposition includes you and the property, and is expressed by the sentence N is human. Now imagine that we remove you from the proposition. Intuitively, what we have left is the property of being human, and an empty ‘slot.’ This might be expressed using the variable ‘x’: x is human. or, just as easily, by

_ is human.

This is what Russell thought propositional functions were. He called them this because they were functions from objects to propositions: they were things which, when you add an object to them, give you back a proposition. So propositional functions are not themselves true or false; they need to have something added to them to make them true or false. One way to get from a propositional function to a proposition is to fill in the empty slot with an object; to replace ‘x’ with a name. But there is another way as well, and Russell thought that it held the key to understanding denoting phrases. Rather than completing the propositional function with an object, we can, so to speak, say something about the propositional function. We can, for example, say that the propositional function is always true: that it is true no matter what object you fill into the empty slot in the proposition. In the case of the propositional function x is human. Russell would write this as human (everything) or human (x) is always true and in our logical notation, we would write it as

∀x (x is human) i.e., For all x, x is human. We can also talk about propositional functions which are sometimes true — i.e., true when at least one object slotted into the proposition makes it true — and propositional functions which are never true. Russell summarizes this theory as follows: “Everything, nothing, and something, are not assumed to have any meaning in isolation, but a meaning is assigned to every proposition in which they occur. This is the principle of the theory of denoting I wish to advocate: that denoting phrases never have any meaning in themselves, but that every proposition in whose verbal expression they occur has a meaning.” Much of this is familiar from our discussion of Frege’s theory of quantification. We now have to see how Russell uses propositional functions to explain denoting phrases like ‘a man’ and ‘the tallest student in the class.’

2.2. Indefinite descriptions

In ‘Descriptions’, he explains a point of puzzlement about indefinite descriptions as follows: ‘Our question is: What do I really assert when I assert “I met a man”? Let us assume, for the moment, that my assertion is true, and that in fact I met Jones. It is clear that what I assert is not “I met Jones.” I may say “I met a man, but it was not Jones”; in that case, though I lie, I do not contradict myself, as I should do if when I say I met a man I really mean that I met Jones.... not only Jones, but no actual man, enters into my statement....

... when we have enumerated all the men in the world, there is nothing left of which we can say, ‘This is a man, and not only so, but it is the ‘a man’, the quintessential entity that is just an indefinite man without being anybody in particular.” (Russell, ‘Descriptions’) This is puzzling; if the value assigned to ‘a man’ is not an object, what could it be?

(1) “x wrote Waverly” is not always false; (2) “if x and y wrote Waverly, x and y are identical” is always true; (3) “if x wrote Waverly, x was Scotch” is always true. (See also the discussion at the top of p. 482 of ‘On denoting.’) You can think of Russell as giving three conditions for ‘the F is G’ to be true: there must exist at least one thing which is F, there must exist at most one thing which is F, and whatever is F must be G. Thus we define ‘the’ in terms of ‘every’ and ‘some.’ In our ordinary logical notation, we would translate The F is G. as ∃x (F x & ∀y (F y → y = x) & Gx)

3. THE THREE PUZZLES OF ‘ON DENOTING’

In ‘On Denoting’, Russell discusses a number of logical puzzles which any theory of de- noting phrases should solve. He describes the role he thinks that these puzzles should play in the construction of a theory of denoting phrases when he writes, “A logical theory may be tested by its capacity for dealing with puzzles, and it is a wholesome plan, in thinking about logic, to stock the mind with as many puzzles as possible, since these serve much the same purpose as is served by experiments in physical science.” (‘On Denoting’, 484-5) Russell raises three important puzzles about the functioning of definite descriptions. One way of viewing these puzzles is as raising a difficulty, in the first instance, for the conjunc- tion of the view that denoting phrases are to be grouped with names with the view that the significance of a name is exhausted by what it stands for. We want to understand both how the puzzles raise challenges for that view, and how the puzzles are resolved by Russell’s theory of denoting phrases.

3.1. The substitution of identicals

Russell presents the first puzzle as follows: “If a is identical with b, whatever is true of the one is true of the other, and either may be substituted for the other without altering the truth or falsehood of that proposition. Now George IV wished to know whether Scott

was the author of Waverley ; and in fact Scott was the author of Waverley. Hence we may substitute “Scott” for “the author of Waverley ” and thereby prove that George IV wished to know whether Scott was Scott. Yet an interest in the law of identity can hardly be attributed to the first gentleman of Europe.” (‘On Denoting’, 485) We can also present the puzzle in terms of Leibniz’s Law, which says that for any x, y, if x = y, then for any property F, Fx Fy. (This is sometimes called the principle of the indiscernibility of identicals, and should be sharply distinguished from the much more controversial principle in metaphysics which is sometimes called the principle of the identity of indiscernibles.) How does Russell’s theory solve this problem? Here is what he says: “When we say : “George IV. wished to know whether so- and-so,” or when we say “So-and-so is surprising ” or “So-and-so is true,” etc., the “so-and-so ” must be a proposition. Suppose now that “so-and-so ” contains a denoting phrase. We may either eliminate this denoting phrase from the subordinate proposition “so-and-so,” or from the whole proposition in which “so-and-so” is a mere constituent. Different propositions result according to which we do. I have heard of a touchy owner of a yacht to whom a guest, on first seeing it, remarked, “I thought your yacht was larger than it is”; and the owner replied, “No, my yacht is not larger than it is”. What the guest meant was, “The size that I thought your yacht was is greater than the size your yacht is”; the meaning attributed to him is, “I thought the size of your yacht was greater than the size of your yacht.” To return to George IV and Waverley, when we say, “George IV wished to know whether Scott was the author of Waverley ,” we normally mean “George IV wished to know whether one and only one man wrote Waverley and Scott was that man;” but we may also mean: “One and only one man wrote Waverley, and George IV wished to know whether Scott was that man.” This illustrates what Russell calls the distinction between primary and secondary occur- rences of denoting phrases. We can also (not coincidentally) illustrate this distinction with sentences involving ‘everyone’ and ‘someone’ like Everyone loves someone.

The round square is unreal. The round square is nonexistent. These sentences are called ‘negative existentials’ because they can be understood as the negation of an existence claim. If it were the case that definite descriptions were to be understood as a kind of name, and names were understood as mere proxies for their bearers, then it may seem that we could give an account of these sentences using a Fregean theory of reference: that is, the sentences would be true just in case there was some object referred to by ‘the round square’ which was, respectively, among the unreal things or the nonexistent things. Russell does not think that this is plausible; there is, after all, no object — the round square — which could be the referent of the ‘the round square.’ What we need is an account of how definite descriptions work which can explain the truth of some negative existentials without the ‘pitiful and paltry evasion’ of claiming that such things do exist, or at least are around to serve as the referents of definite descriptions. Russell thinks that his theory is such an account: “The whole realm of non-entities, such as “the round square,” “the even prime other than 2,” “Apollo,” “Hamlet,” etc., can now be satisfactorily dealt with. All these are denoting phrases which do not denote anything. A proposition about Apollo means what we get by substituting what the classical dictionary tells us is meant by Apollo, say “the sun-god”. All propositions in which Apollo occurs are to be interpreted by the above rules for denoting phrases. If “Apollo ” has a primary occurrence, the proposition containing the occurrence is false; if the occurrence is secondary, the proposition may be true. So again “the round square is round ” means “there is one and only one entity x which is round and square, and that entity is round,” which is a false proposition, not, as Meinong maintains, a true one.”

Russell’s theory was of enormous importance in the history of twentieth-century philosophy; Frank Ramsey famously called it a “paradigm of philosophy.” There is more than one reason for its importance. But one is that it suggested a new way to make progress on philosophical questions. As early analytic philosophers saw it, longstanding, sometimes ancient, metaphysical puzzles — like the puzzle of non-being — could be simply and conclusively solved by detailed analysis of language using the logical techniques given to philosophy by Frege.

5. OBJECTIONS TO RUSSELL’S THEORY

That doesn’t mean, of course, that Russell’s theory of denoting phrases has been immune to criticism; let’s turn to a few of the most important criticisms of the theory.

5.1. Incomplete definite descriptions

Consider what Russell’s view says about the truth conditions for: The book is on the table. Can this sentence be true even if there is more than one book in existence? How might you modify Russell’s theory to avoid these problematic consequences for our uses of incomplete descriptions?

5.2. Referential uses of definite descriptions

Suppose I see a very interesting looking man in the corner drinking a transparent beverage with an olive in it out of a shallow cone-shaped glass, and say to you: The man in the corner drinking a martini looks interesting. As it turns out, he is interesting, but also rather eccentric in his tastes; he’s actually drinking water with an olive in it. Given this, what does my use of “the man in the corner drinking a martini” refer to? What does it take for the above sentence to be true?

5.3. Other uses of ‘the’: generics

How would you apply Russell’s theory to ‘The whale is a mammal.’?

5.4. The contrast between descriptions and names

Implicit in Russell’s exposition of his theory is a contrast between names, which are expressions whose function is just to stand for an object, and denoting phrases, which at first sight seem to work just like names, but really do not. The problem: it looks like each of the logical puzzles discussed above can arise for names, as well as for denoting phrases.