Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Analysis of Periodic Signals using Fourier Series, Lecture notes of Signals and Systems

This document delves into the mathematical analysis of periodic signals using fourier series. it presents formulas and equations related to fourier coefficients and their applications in signal processing. while it offers a glimpse into signal decomposition, the lack of context and practical examples limits its educational value.

Typology: Lecture notes

2024/2025

Available from 04/24/2025

killamsetty-pranitha
killamsetty-pranitha 🇮🇳

28 documents

1 / 10

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
shol>
o
UNTT
Impulse
gusponse
of
tem
(ihea
42me
-
fon
Same
Syotem
K=
thie
hic
Es
called
npul
se
e
ponse.
on
voluitog
sum:
ooble
'
vaiant
system
&s
output
fo
Ealn) *hcn)
JEven
Eopet
acn)
nput
Ún)
ard
co)
both
ae
CauSal
Oebesue
Coouoludion
Gf
Sum
of
he
-folla
pf3
pf4
pf5
pf8
pf9
pfa

Partial preview of the text

Download Analysis of Periodic Signals using Fourier Series and more Lecture notes Signals and Systems in PDF only on Docsity!

UNTT Impulse gusponse^ of^ tem^ (ihea^ 42me^ -

fon Same Syotem

K=

thiehic^ Es^ called^ npul^ se^ e^ ponse.

on voluitog sum:

ooble '

vaiant system

&s output fo

Ealn) *hcn)

JEven Eopetnput acn)

Ún) ard co) both ae CauSal

Oebesue Coouoludion Gf Sum of he -folla

nCn) *h)

Note

(^333) 2 2

YCo) 2cn) *hcn)

( 6

n’No. of

2 2

3 2

y (s4u), (a4h43), +$t942), (u+ 6+)

, (^) , (^) I1, (^20) ,t6, (^) 7,2)

Samples befene Sample value at (^) no (^) -fn (^) gEven (^) stgnal (^) aen)

Ualuer f

h (^) no. of (^) sampleg (^) before (^) sample af (^) n=o (^) fen (^) geen (^) eqnal (^) hen).

Sample vaue

n=tO |) Co) , I7, 20,'

Samges

W 2

Psrobler, hd the toino rome f Fous es Cesle, fn 4he the

-ollou~ng peodlc snal Scb shon o

i: angulaav tsequeny

Ohese

-U-

bn a 2

Fiqune' Thiqnome4n e (^) Fcen es (^) sees (^) eapressedn of

2

At)

gavern (^) slqgnal (^) Ct) (^) Can be (^) expre (^) ssed (^) as )= (^) ,t & (^) (an (^) CotoÐ+bn (^) sio(no)

T-usec

(act) s (^) Cneo) dt

T

the 2T

an 2

feven sgna^ Tu^ sec 2

3

tad Sec

  • )^ dt^ +

as t^ -o)+^ (-g-c)+Cur3)] t1t-2t1]

act). Ct (nut) tt a). Cos^ Chut)^ dt

3

3

3

3

an

bn bn

bn

bh

bn

n 32nT)-2 sân(

3T Soa alNettues even

(-2-

nTT4fo^ h=l,^ S,^ 4,^ 13,

2

values of n'

3x3T

n3, 7,^ y^ 1S,

) sin^ Cnot)^ dt

nw

sâo Cnot) dot

act) sên^ Crot)^ +^ a)^ sin^ Crcot)

sn Cnat)+)sên^ Cnat) C) sio Cmot)

bn bn

b

2n

b

b

for n 2

2n

2

2

2

2 2 30

bo o^ fn^ al^ values^ of^ n'

2

2

2

Noker f (^) hyany^ sgnal^ act)^ Sgmmetle^ about

esttcal ais, hen bn Fouses1 Co-efcient

Cbn) ett be Come Ze9o.

Note

Erame,

nf ang gven sgoal ac) s sgmmetste abeut

|tEme aÃs hen foues Co-effictents a,' an oI be come 2e A0.