Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Signals and systems notes, Lecture notes of Signals and Systems

It having the basics of the signals and basics of the systems like continuous,discrete,random .It having elementary signals like unitstep ,unit ramp ,impluse signals and it also have system like linear time invariant, stable unstable systems ,causal and non causual systems and other signals and systems

Typology: Lecture notes

2024/2025

Available from 04/24/2025

killamsetty-pranitha
killamsetty-pranitha 🇮🇳

28 documents

1 / 155

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17
pf18
pf19
pf1a
pf1b
pf1c
pf1d
pf1e
pf1f
pf20
pf21
pf22
pf23
pf24
pf25
pf26
pf27
pf28
pf29
pf2a
pf2b
pf2c
pf2d
pf2e
pf2f
pf30
pf31
pf32
pf33
pf34
pf35
pf36
pf37
pf38
pf39
pf3a
pf3b
pf3c
pf3d
pf3e
pf3f
pf40
pf41
pf42
pf43
pf44
pf45
pf46
pf47
pf48
pf49
pf4a
pf4b
pf4c
pf4d
pf4e
pf4f
pf50
pf51
pf52
pf53
pf54
pf55
pf56
pf57
pf58
pf59
pf5a
pf5b
pf5c
pf5d
pf5e
pf5f
pf60
pf61
pf62
pf63
pf64

Partial preview of the text

Download Signals and systems notes and more Lecture notes Signals and Systems in PDF only on Docsity!

UNIT-4 B Signol: TE ts 0 physicol quoctity cokich vores (5) depends Don time (or) Spore (or) Onolher inde pencent Vosiable 1 (@) Voxtables- cohtch ceperds on one Ore dimenstonal signal: A sigre! independent — Vooiable: a fgi- (1) AC Poor signol Ui) Speech sige! fees) | [aden 29) Room -tempesoture (wv) electro cordio Diagram fee) dimensionol ot: A signol Cohich, cle pends on ae indecendent Voni oles: ‘Sgn eq: 0) Ti i) Bono grey Mult dimenstonel sign : gnckp endent voxtobles: lie Geooge (1) Pree A-S Gis) X ~ Roy t Fgnob eohich epends on severck Video Signal = three dimensional Eq ECG repot e3: Jeteamintstic signals, The Signals, cobich ave ghie do rapredit by moth msthe matica! Pam is. Colled,, detomints te signols- eg: 3 | = Stnust Readom eegoe! The signals cohich ane inot able ftp represecit =n a Bapiecebcl fren -those. signols ore) Called O39 Random Contnuous Time signal: The Signals cohich Gre. deftne, fr evey —instont of dime ano known os continuous Hy Signels: — Continuo time Signal is also apse ar Peabo % —> Tt denotes corr “th: €9° Temperoture , Signok, AC power ‘iputh signel, Eg Sig Discrete Time Signal: “The signols cghich aro defned a Aserete fi cme are known as diecrete. time. Signal. | > Continusus in Araplitude ond’ ‘Giscrete ta tre. > Te chnoted by aly) Budurs pdt reroetd Falat) = «lt leeaty 9 Te SOmplig pevad N= Time indey (2olegen, Renge ~~» 0 b eo)" Som pling Preces: “The Grecrele representation . of ‘cordin tiene Signet iis. Colled Sarnpling proces . * “a(nt) —s Sompling signol Lor) a Bompling — Seqblene. of ALD as th gee nl! wo), LEN xo) o alr), 9 HOD, > Sompling Sequente toch is chscre Heed fn ie } ts Known as Ogttal Sp ! Digttel Signal: “The Signet ch and Quontitieed mm ompu bade | Pastant: The wnsStosb ot cohich stgeal appa Prstonb- Gom pling fs Kroon as Sampling Sampling of xf) ot Sampling jpexiod Merl x(at) 2 WW |ycan x(n) ) alnt) = 2 sn at - 2 sn Korn) x(n) = 28m O2DRN xc) = 2S8in oO. ano) =O , 20) 2 osnQ onl) = osing 2 = Plas 202) = osm O(a) = 25m Ou 2 PADD C3) 5 2 Sin O23) - DSM OGM = 902 xl) = ogm onnls)= 25m 08m 2 LS xs) = asmoarnls) = o. X(e) = ssmornls- -as XE) = 2 sin oo nla) = ~1/902 aU) = $i Orne) = -1-402r x(%) 2 asm ornla) > -11as xtte) 2. osm 0209) 20 | of 5 wns on aa a ; 7 > ; a t | VAS fe902-| 1-902] |. Lay 0 BP?) seeich the Signel alt= et fir on the signal coh oO Sam pling period Te 012 Set 1 Skelch the discrete time signel y a(y-et OLtK2 deo =) xo) =e7O=! teo2y = xlovs) = eS Ky Ats tos =) xtos) -e-OS . 0-66 ens. OAD = 0364 “2S 2 0-286 toons =) wos) = te. 3 al) ee! tilay > alrawie tevs 2 als) cel — 0/228 taras => xlr95)= el 2 018 ten ate) se? 20/1385 talewol ofA < 2 Semple oad then he 5 0s | os way} yt (os Ke has i 1) os | Or€6 | O-4AD] 0.269 10286 | 9.993 Vk) O13 ORs Aa aa of 025) os) BAS ; a DIU ! a Sample “(t) cotth T=02 Sec at) = 28) acing Sha ean 9 alo) a wot) et M ero rn) ~ O27 wid) ee ee oct) = er) sob > dt . «| | A c Functorel Representetion 1 fe ned x{n) ; 2 fa n= - > fm nil es fy 9-2 ves fa 3 is) fx oll clr voles oF yr stn Tabulon — Ise: va . ana @> in | | 0 ae 0) ie | a 3 n) | Ta 2 2 oe afr) = x(x) =¢ (4) =3 ue haa Basic operations performed on signs ( ) Time, ShP ing Operation j operation operation al. (9) Time yevtrsok (s) Time Scaling (4) Amelctide sealing Opecotion (s) Stgnek mater operotion (e) Sigrol addition eperation | i De eet : got) nace AN \ 7 e ty mts advence. (lett shift} Th me Reverso! ope rolt on. This qperotion — Yeverses te given Signo! fa Line. Conbkauovs “Tine. Stgnel! ime. Yew@sol Operation on Conkinuous Ste, nol x ly “The. mehemoticoh ree resenbobion oft exp resston 1s yt) = a4) op is veversoh Sgrol of given Conti Asus Sigrod Can ob tamed by following she Given Signol ebout += i 1) | | ' o{<—+-__} fb | ws ae ; 2 3 st aa) e 0 EA) ! 1 acti, “RS cho ot co) le ice et dt wey 1 4y 4) ~& Reamer: 5 Tre revesol operction on discrefe tyre signet atn) lepree-tt csith following ratternctteal expression Yn) =LEn) > Tre yevescl signe of Aiscrete’ te. Signal con be obtoin by Pligusing -he Given Stgroh about N=0 ; at) %& Swtlching from 0 tp | ond. Sualchicg $on 1-0 ot +=2 : > 11) rrognibade ts eq uol to | et t=o0 ad +--2- Afton Scaling aU) by foctm 2. : yl) = xP) ee The yt Switches Bom Ot | aad ot 20S and Soi fiom \4p 0 et 218 eguat to | at t=o ond t=1. Ts Aches 4) megnitude is behovinut® grows thet lt) compressed tn tine. | of | othemeticol represen tortion of -the scaling operation discrete ime Sigel - tr)= + (Co) : * Scalin 9 yln) 3 Thre Scoling ecole of utr) bby the factR a=2 let OQ=2 U(r) = tl) alo) 22 N20 = ytn} bs nei ze yin) = 42) 1S n=r = Xn) > “y= rs N=3 = Yln) = U6) = Note = Ylnde & (ay =o Net = Yla) =*6Y =O ' uM Oo -2h i} yld= KEY) 20 Amplitude Scaling _opexetion Amplitude Scaling Operation moy enlarge a Comp ress given Signo! OQ ampbhude | AmpU tide Stabing On Cantnu time. Signol Coq be represe ntad by Followsteg mathe expression are Os fdllovs Ya = axlt) thee Qz Omplitude Scaling Rei I Signod mul pli co-tion operotion Multiplication of -heo signels ban toe! S8sbante ai bg rouhiplic Ag dhe Volue ot eney froboat : Gs) yO)= mA) st : salt) = | 7 ytay = 7,00-> 22.8) at eter x = 1 Lilt) s0F 4C4) = x W-x, ty oF xt <3 *U) =o Nolt) = NG: x,t) nay = OSKIT 2 O04T ulbiplicetion of boo discrete ultiding tree value Signal can be ‘pbtomed by ot every Sampling stent Soy YoY =%, (Cn): ann) yatn) Aln) = v1, 2, ~2,3J mb) = L105, oS,1} Ylo) = xn) - arto) 5 {1 x1, 2x05, yin) = ft u-t33 ~rx0S; axtj Papen tL yt >| \ rs | ;pead cal | | F = aa ee ae nt Wy ; {= | | [est 2, o;-———_|- —— Wi A eo AKON 2 | ee | ve nt il ssi \ t O These Ore used as building blocks Po. raodelling comple Stans. Unit step Signet Cbocbon) ull] \ ule! fa £20 | |+——— 20 fa te 0 -|-——— 5} Bee: te a Ole) sz) PR azo rot FOE al utr) 20 fx 98 | | 14 pots CE : Unit Romp Sig nol Chunccion) cc, de® OR, . WOE Eph rs W . oe 3 7{ 2 : JE ! Yt et fy +56 - { a n =O fx +o : . U = are