Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Solutions manual to Applied Numerical Methods w/MATLAB for Engineers and Scientists, Exercises of Numerical Methods in Engineering

Solutions manual to accompany Chapra's Applied Numerical Methods with MATLAB for Engineers and Scientists

Typology: Exercises

2020/2021
On special offer
50 Points
Discount

Limited-time offer


Uploaded on 05/27/2021

ekadant
ekadant 🇺🇸

4.3

(31)

268 documents

1 / 236

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Solutions Manual
Applied Numerical Methods
With MATLAB for Engineers and Scientists
Steven C. Chapra
Tufts University
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17
pf18
pf19
pf1a
pf1b
pf1c
pf1d
pf1e
pf1f
pf20
pf21
pf22
pf23
pf24
pf25
pf26
pf27
pf28
pf29
pf2a
pf2b
pf2c
pf2d
pf2e
pf2f
pf30
pf31
pf32
pf33
pf34
pf35
pf36
pf37
pf38
pf39
pf3a
pf3b
pf3c
pf3d
pf3e
pf3f
pf40
pf41
pf42
pf43
pf44
pf45
pf46
pf47
pf48
pf49
pf4a
pf4b
pf4c
pf4d
pf4e
pf4f
pf50
pf51
pf52
pf53
pf54
pf55
pf56
pf57
pf58
pf59
pf5a
pf5b
pf5c
pf5d
pf5e
pf5f
pf60
pf61
pf62
pf63
pf64
Discount

On special offer

Partial preview of the text

Download Solutions manual to Applied Numerical Methods w/MATLAB for Engineers and Scientists and more Exercises Numerical Methods in Engineering in PDF only on Docsity!

Solutions Manual

Applied Numerical Methods

With MATLAB for Engineers and Scientists

Steven C. Chapra

Tufts University

CHAPTER 1

1.1 You are given the following differential equation with the initial condition, v ( t = 0) = 0,

2

v

m

c

g

dt

dv d

Multiply both sides by m / cd

2 g v c

m

dt

dv

c

m

d d

Define a = mg / cd

2 2 a v dt

dv

c

m

d

Integrate by separation of variables,

dt m

c

a v

dv (^) d ∫ ∫

2 2

A table of integrals can be consulted to find that

a

x

a x a

dx (^) 1 2 2

tanh

∫ −

Therefore, the integration yields

t C m

c

a

v

a

d = +

− 1 tanh

If v = 0 at t = 0, then because tanh

  • (0) = 0, the constant of integration C = 0 and the solution is

t m

c

a

v

a

d

− 1 tanh

This result can then be rearranged to yield

= t m

gc

c

gm v

d

d

tanh

1.2 This is a transient computation. For the period from ending June 1:

v m

c g dt

dv ' = −

Applying Laplace transforms,

V

m

c

s

g sV v

Solve for

s c m

v

ss c m

g V '/

The first term to the right of the equal sign can be evaluated by a partial fraction expansion,

s c m

B

s

A

ss c m

g

( '/ ) + ' /

( '/ ) ss c m

As c m Bs

ss c m

g

Equating like terms in the numerators yields

A

m

c g

A B

Therefore,

' c '

mg B c

mg A = =−

These results can be substituted into Eq. (2), and the result can be substituted back into Eq.

(1) to give

s c m

v

s c m

mg c

s

mg c V '/

Applying inverse Laplace transforms yields

c mt cm t e v e c

mg

c

mg v

( '/ ) ('/ ) ( 0 ) ' '

− − = − +

or

( )

c mt c mt e c

mg v v e

( '/ ) ('/ ) 1 '

− − = + −

where the first term to the right of the equal sign is the general solution and the second is the

particular solution. For our case, v (0) = 0, so the final solution is

( )

c mt e c

mg v

('/ ) 1 '

− = −

(b) The numerical solution can be implemented as

v = + −

v = + −

The computation can be continued and the results summarized and plotted as:

t v dv / dt 0 0 9. 2 19.6200 6. 4 32.0374 3. 6 39.8962 2. 8 44.8700 1.

10 48.0179 0.

12 50.0102 0.

Note that the analytical solution is included on the plot for comparison.

The process can be continued to give

t y 0 0

0.5 -0. 1 -0. 1.5 -0. 2 0.

2.5 0. 3 0. 3.5 0. 4 0.

4.5 0. 5 0.

-0.

0

0.

0.

0 1 2 3 4 5

y

t m

c

e c

gm v t

⎟ ⎠

⎞ ⎜ ⎝

−⎛ = −

jumper #1: v t ( 1 e ) 44. 87 m / s

  1. 5

10

  1. 1

  2. 5

= − =

⎟ ⎠

⎜ ⎞ ⎝

−⎛

jumper #2: ( 1 ) 14

75

14 t e

⎟ ⎠

⎜ ⎞ ⎝

−⎛ = −

t e

  1. 18666
  2. 87 52. 5 52. 5

− = −

t e

  1. 18666
  2. 14533

t e

  1. 18666 ln 0. 14533 ln

t = 10.33 sec

1.8 Q in = Q out

Q 1 = Q 2 + Q 3

30 = 20 + vA 3

10 = 5 A 3

A 3 = 2 m

2

1.9Min −∑ Mout = 0

[ 1000 + 1200 +MP+ 50 ] −[ 400 + 200 + 1400 + 200 + 350 ] = 0

Metabolic production = 300 grams

1.10 (^) ∑ %body weight= 60

4. 5 + 4. 5 + 12 + 4. 5 + 1. 5 + IW = 60

% Intracellular water body weight = 33 %

4. 5 + 4. 5 + 12 + 4. 5 + 1. 5 + IW = 60

∑ %body water=^100

7. 5 + 7. 5 + 20 + 7. 5 + 55 + TW = 100

% Transcellular water of body water = 2.5 %

t = 5 10 15 20 25 30

(b)

x = linspace(-3,3,7)

x = -3 -2 -1 0 1 2 3

2.4 (a)

v = -2:.75:

v = -2.0000 -1.2500 -0.5000 0.2500 1.

(b)

r = 6:-1:

r = 6 5 4 3 2 1 0

F = [10 12 15 9 12 16]; x = [0.013 0.020 0.009 0.010 0.012 0.010]; k = F./x

k = 1.0e+003 * 0.7692 0.6000 1.6667 0.9000 1.0000 1.

U = .5k.x.^

U = 0.0650 0.1200 0.0675 0.0450 0.0720 0.

max(U)

ans =

TF = 32:3.6:93.2; TC = 5/9(TF-32); rho = 5.5289e-8TC.^3-8.5016e-6TC.^2+6.5622e-5TC+0.99987; plot(TC,rho)

A = [.035 .0001 10 2;

.02 .0002 8 1; .015 .001 20 1.5; .03 .0007 24 3; .022 .0003 15 2.5]

A = 0.0350 0.0001 10.0000 2. 0.0200 0.0002 8.0000 1. 0.0150 0.0010 20.0000 1. 0.0300 0.0007 24.0000 3. 0.0220 0.0003 15.0000 2.

U = sqrt(A(:,2))./A(:,1).(A(:,3).A(:,4)./(A(:,3)+2*A(:,4))).^(2/3)

U =

t = 10:10:60; c = [3.4 2.6 1.6 1.3 1.0 0.5]; tf = 0:70; cf = 4.84exp(-0.034tf); plot(t,c,'s',tf,cf,'--')

v = 10:10:80; F = [25 70 380 550 610 1220 830 1450]; vf = 0:100; Ff = 0.2741*vf.^1.9842; loglog(v,F,'d',vf,Ff,':')

x = linspace(0,3*pi/2); c = cos(x); cf = 1-x.^2/2+x.^4/factorial(4)-x.^6/factorial(6); plot(x,c,x,cf,'--')

3.3 The M-file can be written as

function annualpayment(P, i, n) nn = 1:n; A = Pi(1+i).^nn./((1+i).^nn-1); y = [nn;A]; fprintf('\n year annualpayment\n'); fprintf('%5d %14.2f\n',y);

This function can be used to evaluate the test case,

annualpayment(35000,.076,5)

year annualpayment 1 37660. 2 19519. 3 13483. 4 10473. 5 8673.

3.4 The M-file can be written as

function Tavg = avgtemp(Tmean, Tpeak, tstart, tend) omega = 2pi/365; t = tstart:tend; Te = Tmean + (Tpeak-Tmean)cos(omega*(t-205)); Tavg = mean(Te);

This function can be used to evaluate the test cases,

avgtemp(5.2,22.1,0,59)

ans = -10.

avgtemp(23.1,33.6,180,242)

ans =

3.5 The M-file can be written as

function vol = tankvol(R, d) if d < R vol = pi * d ^ 3 / 3; elseif d <= 3 * R v1 = pi * R ^ 3 / 3; v2 = pi * R ^ 2 * (d - R); vol = v1 + v2; else error('overtop') end

This function can be used to evaluate the test cases,

tankvol(1,0.5) ans =

tankvol(1,1.2) ans =

tankvol(1,3.0) ans =

tankvol(1,3.1) ??? Error using ==> tankvol overtop

3.6 The M-file can be written as

function [r, th] = polar(x, y) r = sqrt(x .^ 2 + y .^ 2); if x < 0 if y > 0 th = atan(y / x) + pi; elseif y < 0 th = atan(y / x) - pi; else th = pi; end else if y > 0 th = pi / 2; elseif y < 0 th = -pi / 2; else th = 0; end end th = th * 180 / pi;

This function can be used to evaluate the test cases. For example, for the first case,

[r,th]=polar(1,1)

r =

th = 90

The remaining cases are

3.8 The M-file can be written as

function grade = lettergrade(score) if score >= 90 grade = 'A'; elseif score >= 80 grade = 'B'; elseif score >= 70 grade = 'C'; elseif score >= 60 grade = 'D'; else grade = 'F'; end

This function can be tested with a few cases,

lettergrade(95) ans = A

lettergrade(45) ans = F

lettergrade(80) ans = B

3.9 The M-file can be written as

function Manning(A)

A(:,5) = sqrt(A(:,2))./A(:,1).(A(:,3).A(:,4)./(A(:,3)+2*A(:,4))).^(2/3);

fprintf('\n n S B H U\n');

fprintf('%8.3f %8.4f %10.2f %10.2f %10.4f\n',A');

This function can be run to create the table,

Manning(A)

n S B H U 0.035 0.0001 10.00 2.00 0. 0.020 0.0002 8.00 1.00 0. 0.015 0.0010 20.00 1.50 2. 0.030 0.0007 24.00 3.00 1. 0.022 0.0003 15.00 2.50 1.

3.10 The M-file can be written as

function beam(x) xx = linspace(0,x); n=length(xx); for i=1:n uy(i) = -5/6.(sing(xx(i),0,4)-sing(xx(i),5,4)); uy(i) = uy(i) + 15/6.sing(xx(i),8,3) + 75sing(xx(i),7,2); uy(i) = uy(i) + 57/6.xx(i)^3 - 238.25.*xx(i); end plot(xx,uy)

function s = sing(xxx,a,n) if xxx > a s = (xxx - a).^n; else s=0; end

This function can be run to create the plot,

beam(10)

3.11 The M-file can be written as

function cylinder(r, L) h = linspace(0,2r); V = (r^2acos((r-h)./r)-(r-h).sqrt(2rh-h.^2))L; plot(h, V)

This function can be run to the plot,

cylinder(2,5)