Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Solving Systems of Equations by Graphing, Exams of Pre-Calculus

Solving Systems of Equations by Graphing. Solve each system by graphing (find the point of intersection of the two lines) . 1) y = 2x - 3 y = -3x + 2.

Typology: Exams

2021/2022

Uploaded on 09/12/2022

esha
esha 🇺🇸

3

(1)

224 documents

1 / 7

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1




 


 






 




=
2
- 3
=
-3
+ 2
-5 -4 -3 -2 -1 0 1 2 3 4 5
-5
-4
-3
-2
-1
1
2
3
4
5

=
- 5
3
+ 1
=
- 1
3
- 3
-5 -4 -3 -2 -1 0 1 2 3 4 5
-5
-4
-3
-2
-1
1
2
3
4
5

=
-
+ 1
= 3
-5 -4 -3 -2 -1 0 1 2 3 4 5
-5
-4
-3
-2
-1
1
2
3
4
5

=
4
+ 1
=
- 2
-5 -4 -3 -2 -1 0 1 2 3 4 5
-5
-4
-3
-2
-1
1
2
3
4
5

pf3
pf4
pf5

Partial preview of the text

Download Solving Systems of Equations by Graphing and more Exams Pre-Calculus in PDF only on Docsity!

‹) 8 RY 1  5  .MX]W/D 2  Q 6 RNITW=Z<DKUH Z/ 0 /)&UO < G$FOJOM 6 UL 9 J 1 K 7 WGV OUGHJVVH$U 2 Y&HZG;U ]  0 NDDG/H: 9 ZMLUWEKZ /, 4 Q 0 I*L$QPLWW]HV /$)OWJ)H;E 6 UTD 9  +[ :RUNVKHHWE\.XWD6RIWZDUH//&

:RUNVKHHW 1DPHBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB

6 ROYLQJ 6 \VWHPVRI(TXDWLRQVE\*UDSKLQJ 'DWHBBBBBBBBBBBBBBBB

6ROYHHDFKV\VWHPE\JUDSKLQJ ILQGWKHSRLQWRILQWHUVHFWLRQRIWKHWZROLQHV 

 \ = 2 [ - 3 \ = - 3 [ + 2

  • 5 - 4 - 3 - 2 - 1 0 1 2 3 4 5
    • 5
    • 4
    • 3
    • 2
    • 1

1

2 3 4 5   \ = - 5 3 [ + 1 \ = - 1 3 [ - 3

  • 5 - 4 - 3 - 2 - 1 0 1 2 3 4 5
    • 5
    • 4
    • 3
    • 2
    • 1

1

2 3 4 5   \ = - [ + 1 [ = 3

  • 5 - 4 - 3 - 2 - 1 0 1 2 3 4 5
    • 5
    • 4
    • 3
    • 2
    • 1

1

2 3 4 5   \ = 4 [ + 1 \ = [ - 2

  • 5 - 4 - 3 - 2 - 1 0 1 2 3 4 5
    • 5
    • 4
    • 3
    • 2
    • 1

‹F GN<-' %.,X 4 W(DI 36 R%I 0 WQZXDU;H7 2 /, /-&%& 3 H$EO 8 O) 5 U 0 L,J 6 K;W'V, 2 U'H 7 V/HGUJYTH 7 GM* .  06 DEG=HS 3 ZGLMWNKF ],=Q(I/L&Q)L$W=H 5  N$FOEJ$H<E]UGD 7  8 & :RUNVKHHWE\.XWD6RIWZDUH//&

 \ = - 1 3 [ + 2 \ = - 2 [ - 3

  • 5 - 4 - 3 - 2 - 1 0 1 2 3 4 5
    • 5
    • 4
    • 3
    • 2
    • 1

 \ = - 1 4 [ + 3 \ = - 3 2 [ - 2

  • 5 - 4 - 3 - 2 - 1 0 1 2 3 4 5
    • 5
    • 4
    • 3
    • 2
    • 1

 \ = 4 3 [ - 3 \ = 1

  • 5 - 4 - 3 - 2 - 1 0 1 2 3 4 5
    • 5
    • 4
    • 3
    • 2
    • 1

 \ = - 2 [ - 4 \ = 4 [ + 2

  • 5 - 4 - 3 - 2 - 1 0 1 2 3 4 5
    • 5
    • 4
    • 3
    • 2
    • 1



‹ 1  :\;,R Q. 9 X<WD= X 6 - RIW.ZQD)U]H\ U/*/R&/X L Y$O;O+ 5 U$LJ)KQWIV< WULH;V&H 9 U)Y(H[G 6 G . ' 09 D]G%H 0  =Z-LL W 6 K 1  F ,)QOI]LJQXLWOH 9  - $DORJ:H/E+U 2 D- 4 [ 5  :RUNVKHHWE\.XWD6RIWZDUH//&

 2 [ + \ = 1 2 [ - \ = 3

  • 5 - 4 - 3 - 2 - 1 0 1 2 3 4 5
    • 5
    • 4
    • 3
    • 2
    • 1

 [ - 3 \ = - 6 2 [ - \ = 3

  • 5 - 4 - 3 - 2 - 1 0 1 2 3 4 5
    • 5
    • 4
    • 3
    • 2
    • 1

 [ + 3 \ = - 12 5 [ - 3 \ = - 6

  • 5 - 4 - 3 - 2 - 1 0 1 2 3 4 5
    • 5
    • 4
    • 3
    • 2
    • 1

 2 [ + \ = - 4 [ + 4 \ = 12

  • 5 - 4 - 3 - 2 - 1 0 1 2 3 4 5
    • 5
    • 4
    • 3
    • 2
    • 1

 [ + 2 \ = 8 [ - 2 \ = - 4

  • 5 - 4 - 3 - 2 - 1 0 1 2 3 4 5
    • 5
    • 4
    • 3
    • 2
    • 1

 2 [ + 3 \ = - 12 5 [ - 3 \ = - 9

  • 5 - 4 - 3 - 2 - 1 0 1 2 3 4 5
    • 5
    • 4
    • 3
    • 2
    • 1



‹: JM 4 EO ].RX]WD/ K 6 <RVI 3 WFZGD 6 UHT S/Q/U &KY M P$OO$O 2 U 5 L:JRKOW- V V UW HVF HRUYYHUG 8 L  , 04 DG$H 9  Z<L,WQKE , 0 QYILZQ(L]W.HV &$VO 6 JEH 5 EUDG 0 H :RUNVKHHWE\.XWD6RIWZDUH//&

6ROYHHDFKV\VWHPE\JUDSKLQJ ILQGWKHSRLQWRILQWHUVHFWLRQRIWKHWZROLQHV   - 6 [ + \ = 4

  • \ - 2 [ = 4
  • 5 - 4 - 3 - 2 - 1 0 1 2 3 4 5
  • 5
  • 4
  • 3
  • 2
  • 1

 - \ - 3 + 4 [ = 0

  • 4 = - 3 [ - \
  • 5 - 4 - 3 - 2 - 1 0 1 2 3 4 5
  • 5
  • 4
  • 3
  • 2
  • 1

 0 = - 3 [ - 4 - 2
2 - 1 2 [ = \

  • 5 - 4 - 3 - 2 - 1 0 1 2 3 4 5
    • 5
    • 4
    • 3
    • 2
    • 1

 - 2 [ - \ = 1

  • 6 [ = 3 \ + 3
  • 5 - 4 - 3 - 2 - 1 0 1 2 3 4 5
  • 5
  • 4
  • 3
  • 2
  • 1

 [ - 2 \ + 8 = 0

  • 6 - 2 \ = - [
  • 5 - 4 - 3 - 2 - 1 0 1 2 3 4 5
  • 5
  • 4
  • 3
  • 2
  • 1

 - 2 \ - 5 [ = 2

  • 5 [ = 2 \ - 4
  • 5 - 4 - 3 - 2 - 1 0 1 2 3 4 5
  • 5
  • 4
  • 3
  • 2
  • 1



‹= LX)\J - .%X 8 WMD*  6 ]RYIWZDU'H, T/ 9 /Q&J ) :$O,OG ZUILYJHKNW 2 V. UTHNV;H 8 U.Y+H 0 G- E D 0 &DTG=H/ &ZLWKT Z,Q.I 0 LUQJL/W'HS 6 $ 1 ORJFHGE;U(DK / 9 H  :RUNVKHHWE\.XWD6RIWZDUH//&

$QVZHUVWR 6 ROYLQJ 6 \VWHPVRI(TXDWLRQVE\*UDSKLQJ

  1  - 1    3  - 4    3  - 2    - 1  - 3 

  - 3  3    - 4  4    3  1    - 1  - 2    2  1    4  4    1  - 1    4  2    - 1  4    - 2  - 4    1  - 1    3  3    - 3  - 3    - 4  4    2  3    - 3  - 2    - 1  - 2    1  1    - 4  4    ,QILQLWHQXPEHURIVROXWLRQV   1RVROXWLRQ   1RVROXWLRQ   ,QILQLWHQXPEHURIVROXWLRQV   - 1  2    ,QILQLWHQXPEHURIVROXWLRQV   1RVROXWLRQ