Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Transmission Line Parameters and Characteristics: Solved Problems, Schemes and Mind Maps of Law of Obligations

static latches and registers hand written notes

Typology: Schemes and Mind Maps

2020/2021

Uploaded on 03/04/2023

deepthi-2
deepthi-2 🇮🇳

5

(1)

8 documents

1 / 24

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Solved Anna University Problems
(NOV/DEC 2010 - NOV/DEC 2019)
EC8651-Transmission Lines and RF
Systems
UNIT 1 - TRANSMISSION LINE THEORY
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17
pf18

Partial preview of the text

Download Transmission Line Parameters and Characteristics: Solved Problems and more Schemes and Mind Maps Law of Obligations in PDF only on Docsity!

Solved Anna University Problems

(NOV/DEC 2010 - NOV/DEC 2019)

EC8651-Transmission Lines and RF

Systems

UNIT 1 - TRANSMISSION LINE THEORY

UNIT 1 - TRANSMISSION LINE THEORY

PROBLEMS

  1. Find the characteristic impedance of a line at 1600Hz if ZOC = 750∠-30° Ω

and ZSC = 600 ∠-20° Ω. [EC6503-NOV/DEC 2019](2 Marks), [EC6503-

NOV/DEC 2016](2 Marks), [EC6503-APR/MAY 2019](2 Marks)

Solution:

Given: f= 1600 Hz, ZOC = 750∠-30° Ω, ZSC = 600∠-20° Ω

Z O = ZOC×Z SC

  Z (^) O = 750 ∠− 30 × 600 ∠− 20

ZO = 670.82 ∠ -

° Ω

  1. The following measurement are made on a 25km line at a frequency of 796

Hz. ZSC = 3220 ∠-79.29° Ω, ZOC = 1301∠76.67° Ω. Determine the primary

constants of the line. [EC2305-NOV/DEC 2014](10 Marks)

Solution:

Given: l=25Km, f=796Km, ZSC = 3220∠-79.29° Ω, ZOC = 1301∠76.67° Ω

Z O = ZOC×Z SC

  Z (^) o = 1301 ∠ 76. 67 × 3220 ∠− 79. 29

ZO = 2046.76 ∠ -1.

°

OC

SC

Z

Z

tanh γ =

tanh γ ∠

  1. 5732 77. 98 e 1

e 1 tanh γ 2 γ

2 γ

= ∠ −

  1. 3276 j 1. 5387 e 1

e 1

2 γ

2 γ

= −

e 1 ( 0. 3276 j 1. 5387 )(e 1 )

2 γ 2 γ − = − +

e 1 0. 3276 e 0. 3276 j 1. 5387 e j 1. 5387

2 γ 2 γ 2 γ − = × + − × −

e [ 1 0. 3276 j 1. 5387 ] 1 0. 3276 j 1. 5387

2 γ − + = + −

e [ 0. 6724 j 1. 5387 ] 1. 3276 j 1. 5387

2 γ

  • = −
  1. 8 nF/Km
  2. 88
C

4

=

×

C = 98.8 nF/Km

  1. A transmission line has Zo = 745∠-12° Ω and is terminated in ZR=100Ω.

Calculate reflection factor. [EC6503-APR/MAY 2017](2 Marks)

Solution:

Given: Zo = 745∠-12° Ω, ZR=100Ω

R+^ O

R O

Z Z

2 Z Z

ReflectionFactor,k=

× ∠−

ReflectionFactor,k=

ReflectionFactor,k=

Reflection Factor = 0.64754.

°

  1. A transmission line has Zo = 745∠-12° Ω and is terminated in ZR=100Ω.

Calculate reflection loss in dB. [EC2305-APR/MAY 2011](2 Marks)

Solution:

Given: Zo = 745∠-12° Ω, ZR=100Ω

dB |k|

Reflection lossindB= 20 log 

R+^ O

R O

Z Z

2 Z Z

Reflection Factor,k=

× ∠−

Reflection Factor,k=

Reflection Factor,k=

Reflection Factor = 0.64754.

°

dB

Reflection lossindB= 20 log  

Reflection loss in dB = 3.7752 dB

  1. A transmission line has a characteristic impedance of 400 Ω and is

terminated by a load impedance of (650-j475) Ω. Determine the reflection

coefficient. [EC2305-NOV/DEC 2013](2 Marks)

Solution:

Given: ZO = 400 Ω, ZR = (650-j475) Ω

1050 j 475

250 j 475

( 650 j 475 ) 400

( 650 j 475 ) 400

Z Z
Z Z
K

R O

R O

 K = 0. 3675 −j 0. 2861 = 0. 4658 ∠− 37. 9

K = 0.4658 ∠ -37.9 °
  1. A transmission line has a characteristic impedance of 600 Ω. Determine

magnitude of reflection coefficient if the receiving end impedance is (650-j475)

Ω. [EC2305-NOV/DEC 2013](2 Marks)

Solution:

Given: ZO = 600 Ω, ZR = (650-j475) Ω

1250 j 475

50 j 475

( 650 j 475 ) 600

( 650 j 475 ) 600

Z Z
Z Z
K

R O

R O

 K = 0. 1611 −j 0. 3188 = 0. 3571 ∠− 63. 18

K = 0.3571 ∠ -63.18 °
  1. A transmission line has a characteristic impedance of 300 Ω and is

terminated in a load impedance of (150-j150) Ω. Determine the reflection

coefficient. [EC2305-APR/MAY 2014](2 Marks)

Solution:

Given: ZO = 300 Ω, ZR = (150-j150) Ω

450 j 150

150 j 150

( 150 j 150 ) 300

( 150 j 150 ) 300

Z Z
Z Z
K

R O

R O

 K =− 0. 2 −j 0. 4 = 0. 4472 ∠− 116. 57

K = 0.4472 ∠ -116.57 °
  1. Find the reflection coefficient of a 50 ohm line when it is terminated by a

load impedance of 60+j 40 ohm. [EC6503-NOV/DEC 2015](2 Marks),

[EC2305-NOV/DEC 2015](2 Marks)[EC2305-APR/MAY 2013](2 Marks)

Solution:

Given: ZO = 50 Ω, ZR = (60+j40) Ω

  1. A transmission line has a characteristic impedance of (683-j138) ohm. the

propagation constant is (0.0074+j0.0356) per Km. Determine the values of R

and L of this line if the frequency is 1000Hz.

[EC2305-APR/MAY 2014](6 Marks)

Solution:

Given: Zo = 683-j138Ω, γ=P= 0.0074+j0.0356, f=1000Hz

ω = 2πf = 2 x 3.14 x 1000 = 6280

R+jωL = ZoP = (683-j138) x ( 0.0074+j0.0356)

= 9.967+j23.

Comparing real and imaginary terms,

R = 9.967 ohms/Km

ωL = 23.

  1. 7092 mH/ Km 6280
L = =

L=3.7092 mH/Km

  1. A Communication line has L=3.67 mH/Km, G=0.08x10-6^ mho/Km,

C=0.0083 μF/Km and R=10.4 Ω/Km. Determine the characteristic impedance,

propagation constant, phase constant, velocity of propagation, sending end

current and receiving end current for a given frequency f=1000 Hz. sending

end voltage is 1V and transmission line length is 100Kms.

[EC6503-NOV/DEC 2016] (16 Marks) [EC6503-APR/MAY 2018](13 Marks)

Solution:

Given: Es = 1V, f=1000 Hz, l=100 Km, R=10.4 Ω/Km, L = 0.00367H/Km, G

=0.08x10-6^ mho/Km, C = 0.0083 μF/Km

ω = 2πf = 2x3.14x1000 = 6280

The characteristic impedance is given by,

G jω C

R jωL

Y
Z

Z (^) o

Z = R+jωL = 10.4 + j(6280)(.00367) = 25.285∠65.71°

Y = G+jωC = 0.08x10-6^ +j(6280)(0.0083x10-6) = 5.212x10-5∠89.

°

Z

o (^5) × ∠

Z

3 o

  ∠ − ×

Zo = 696.46-12.

° Ω

The propagation constant is given by,

P =γ= ZY = ( R+jωL)( G+jωC)

  P γ 25. 285 65. 71 5. 212 10 89. 91

5 = = ∠ × × ∠

P γ 1. 319 10 ( 65. 71 89. 91 )

3   = = × ∠ +

P=γ = α+jβ = 0.0363 ∠77.81° (Or) 7.6649x10-3+j0.

attenuation constant, α = 7.6649x10-3^ Np/Km

and phase constant, β = 0.0355 rad/Km

The velocity of propagation is given by,

β

ω v (^) p =

  1. 769 10 Km/ sec
  2. 0355

v

5 p = = ×

  1. 99 m
  2. 0355

2 π

β

2 π λ = = =

NOTE: ZR value is not given in the question. so, assume the line is perfectly

matched line to proceed further. i.e., ZR=ZO, ZS=ZO

g S

g

g in

g S Z Z

E
Z Z
E
I
1. 4358 10 12. 1 A
I

3 S

 

= × ∠

IS = 1.4358x10-3^ ∠ 12.

°

We know that,

− ZYs

R o

ZYs R o

0

R R o e Z Z

Z Z

e Z

Z Z
I
I

At sending end, s=l, and put K=0, because ZR = ZO.

ZY l IS =IRe

ZY l IR ISe

( )  e e e e 203. 4

ZYl γl -7.6649 10 +j0.0355 100 0. 76649

= = = ∠

− − × × −

 e 0. 4646 203. 4

ZYl = ∠

  I 1. 4358 10 12. 1 0. 4646 203. 4

3 ∴ (^) R = × ∠ × ∠

IR = 6.671x10-4-144.

° A

  1. A 2 meter long transmission line with characteristics impedance of 60+j 40

ohm is operating at ω = 10^6 rad / sec has attenuation constant of 0.921 Np/m

and phase shift constant of 0 rad /m. If the line is terminated by a load of

20+j50 ohm, determine the input impedance of this line.

[EC6503-NOV/DEC 2015](6 Marks), [EC6503-APR/MAY 2017](8 Marks),

[EC2305-NOV/DEC 2015](6 Marks), [EC2305-APR/MAY 2019](8 Marks)

Solution:

Given: l = 2m, ZO = 60+j 40Ω, ω = 10^6 rad/sec, α= 0.921 Np/m, β= 0 rad /m,

ZR = 20+j50 Ω

Reflection Coefficient, K

R O

R O

Z Z

Z Z

K

  1. 1586 j 0. 30345 0. 3424 117. 6 ( 20 j 50 ) ( 60 j 40 )

( 20 j 50 ) ( 60 j 40 ) K = − + = ∠

K=0.3424 ∠ 117.6 °

e e e βl e ( 0 )( 2 )

γl (α jβ)l αl ( 0. 921 )( 2 ) = = ∠ = ∠

γl 1. 842 e =e

e

γ l = 6.30910 °

e e e βl e ( 0 )( 2 )

γl (α jβ)l αl ( 0. 921 )( 2 ) = = ∠− = ∠−

− − + − −

γl 1. 842 e e

− −

e-

γ l = 0.15850 °

γl γ l

γl γ l

s o e Ke

e Ke Z Z

Z (^) s 72. 11 33. 69 

 

 

Z (^) s 72. 11 33. 69

 

Z (^) s 72. 11 33. 69

{ }

  Z (^) s = 72. 11 ∠ 33. 69 0. 9920 ∠ 0. 8740

ZS = 71.54 ∠ 34.

° Ω

  1. A generator of 1V, 1000 Hz, supplies power to a 100 Km open wire line

terminated in ZO and having following parameters R = 10.4 ohm per Km, L =

0.00367 Henry per Km, G =

6

  1. 8 10

− × mho per Km, C = 0.00835 μF per Km.

Calculate Zo, α, β, λ, v. also find the received power.

[EC6503-MAY/JUN 2016](16 Marks), [EC6503-APR/MAY 2016](16 Marks),

[EC6503-APR/MAY 2015](16 Marks)

Solution:

Given: Eg = 1V, f=1000 Hz, l=100 Km, when ZR = ZO then ZS = ZO, R=10.

Ω/Km, L = 0.00367H/Km, G =0.8x10-6^ mho/Km, C = 0.00835 μF/Km

ω = 2πf = 2x3.14x1000 = 6280

The characteristic impedance is given by,

G jω C

R jωL

Y
Z

Z (^) o

Z = R+jωL = 10.4 + j(6280)(.00367) = 25.285∠65.71°

Y = G+jωC = 0.8x10-6^ +j(6280)(0.00835x10-6) = 5.244x10-5∠89.

°

Z

5 o × ∠

Z

3 o

  ∠ − ×

Zo = 694.48-11.

° Ω

The propagation constant is given by,

P =γ= ZY = ( R+jωL)( G+jωC)

  P γ 25. 285 65. 71 5. 244 10 89. 13

5 = = ∠ × × ∠

P γ 1. 326 10 ( 65. 71 89. 13 )

3   = = × ∠ +

P=γ = α+jβ = 0.0364 ∠77.42° (Or) 7.928x10-3+j0.

attenuation constant, α = 7.928x10-3^ Np/Km

and phase constant, β = 0.0355 rad/Km

The velocity of propagation is given by,

β

ω v (^) p =

  1. 769 10 Km/ sec
  2. 0355

v

5 p = = ×

  1. 99 m
  2. 0355

2 π

β

2 π λ = = =

  1. A generator of 1V, 1000 cycles, supplies power to a 100 mile open wire line

terminated in ZO and having following parameters: Series resistance R = 10.

ohm/ mile, Series inductance L = 0.00367 H/mile, Shunt conductance G = 0.

x 10-6^ mho/ mile, and capacitance between conductors C = 0.00835 μF/mile.

Find the characteristic impedance, Propagation constant, attenuation

constant, phase shift constant, velocity of propagation and wavelength.

[EC6503-APR/MAY 2017](6 Marks)

Solution:

Given: Eg = 1V, f=1000 cycles = 1000 Hz, l=100 mile, when ZR = ZO then ZS =

ZO, R=10.4 Ω/ mile, L = 0.00367H/ mile, G =0.8x10-6^ mho/ mile, C = 0.

μF/ mile

ω = 2πf = 2x3.14x1000 = 6280

The characteristic impedance is given by,

G jω C

R jωL

Y
Z

Z (^) o

Z = R+jωL = 10.4 + j(6280)(0.00367) = 25.285∠65.71°

Y = G+jωC = 0.8x10-6^ +j(6280)(0.00835x10-6) = 5.244x10-5∠89.

°

Z

o (^5) × ∠

Z

o (^3)

  ∠ − ×

Zo = 694.48-11.

° Ω

The propagation constant is given by,

P =γ= ZY = ( R+jωL)( G+jωC)

  P γ 25. 285 65. 71 5. 244 10 89. 13

5 = = ∠ × × ∠

P γ 1. 326 10 ( 65. 71 89. 13 )

3   = = × ∠ +

P=γ = α+jβ = 0.0364 ∠77.42° (Or) 7.928x10-3+j0.

attenuation constant, α = 7.928x10-3^ Np/Km

and phase constant, β = 0.0355 rad/Km

The velocity of propagation is given by,

β

ω v (^) p =

  1. 769 10 Km/ sec
  2. 0355

v

5 p = = ×

  1. 99 m
  2. 0355

2 π

β

2 π λ = = =

  1. A generator of 1V, 1KHz, supplies power to a 100 Km open wire line

terminated in 200 Ω resistance. The line parameters are R = 10 Ω/Km, L =

3.8mH/Km, G =1x10-6^ mho/Km, C = 0.0085 μF/Km. Calculate Zo, α, β, λ, v.

also find the received power. [EC2305-NOV/DEC 2018](16 Marks)

Solution:

Given: Eg = 1V, f=1000 Hz, l=100 Km, ZR =200 Ω, R=10 Ω/Km, L =

3.8mH/Km, G =1x10-6^ mho/Km, C = 0.0085 μF/Km

ω = 2πf = 2x3.14x1000 = 6280

The characteristic impedance is given by,

G jω C

R jωL

Y
Z

Z (^) o

Z = R+jωL = 10 + j(6280)(3.8x10-3) = 25.87∠67.26°

Y = G+jωC = 1x10-6^ +j(6280)(0.0085x10-6) = 5.339x10-5∠88.

°

Zo

×

Zo

×

Zo = 696.06-10.

° Ω

The propagation constant is given by,

P =γ= ZY = ( R+jωL)( G+jωC)

P γ 25. 87 67. 26 5. 339 10 ∠

= = ∠ × ×

P γ 1. 3812 10

= = ×

P=γ = α+jβ = 0.03716 ∠78.095° (Or) 7.6657x10-3+j0.

attenuation constant, α = 7.6657x10-3^ Np/Km

and phase constant, β = 0.03636 rad/Km

The velocity of propagation is given by,

β

ω v (^) p =

Km/ sec

v (^) p= = ×

  1. 72 m
  2. 03636

2 π

β

2 π λ = = =

Reflection Coefficient, K

R O

R O

Z Z

Z Z

K

[ ]

ZYl ZYl

0

R R o S e Ke Z

Z Z
I
I

− − 

ZR + ZO = 893.28∠-8.

°

Ke

√ZYl = 0.5609∠173.

° x 2.1524 ∠208.

°

Ke

√ZYl = 1.2073∠21.

°

[ ]

  

 

  1. 1524 208. 3 1. 2073 21. 58 696.06 -10.
I

1.5992x10 - 1.

  • 3 R ∠ − ∠ 

( )[ ]

  

  1. 2833 2. 413 3. 354 154. 11 2
I

1.5992x10 - 1.

  • (^3) R ∠ = ∠ ∠−

  1.5992x10 - 1.548 IR 2. 1523 151. 70

  • ∠ = × ∠−

IR = 7.43x10-4150.

°

ER = IR x ZR = 7.43x10-4∠150.

° x 200 = 0.1486∠150.

°

ER = 0.1486 ∠ 150.

° V

PS = |ES|. |IS|.cos (ES^ IS)

PS = 1 x 1.5992 x 10-3^ x cos (-1.5477)

PS = 1.5986 x 10-3^ W

and PR = |ER|. |IR|.cos (ER^ IR)

PR = 0.1486 x 7.43x10-4^ cos(0)

PR = 0.1486 x 7.43x10-4^ W

PR = 1.1041x10-4^ W

  1. A generator of 1V, 1KHz, supplies power to a 100 Km open wire line

terminated in 200 Ω resistance. The line parameters are R = 10 Ω/Km, L =

3.8mH/Km, G =1x10-6^ mho/Km, C = 0.0085 μF/Km. Calculate the

impedance, reflection coefficient, power and transmission efficiency.

[EC2305-APR/MAY 2011](16 Marks)

Solution:

Given: Eg = 1V, f=1000 Hz, l=100 Km, ZR =200 Ω, R=10 Ω/Km, L =

3.8mH/Km, G =1x10-6^ mho/Km, C = 0.0085 μF/Km

ω = 2πf = 2x3.14x1000 = 6280

The characteristic impedance is given by,

G jω C

R jωL

Y
Z

Z (^) o

Z = R+jωL = 10 + j(6280)(3.8x10-3) = 25.87∠67.26°

Y = G+jωC = 1x10-6^ +j(6280)(0.0085x10-6) = 5.339x10-5∠88.

°

Zo

×

Zo

×

Zo = 696.06-10.

° Ω

The propagation constant is given by,

P =γ= ZY = ( R+jωL)( G+jωC)

P γ 25. 87 67. 26 5. 339 10 ∠

= = ∠ × ×

P γ 1. 3812 10

= = ×

P=γ = α+jβ = 0.03716 ∠78.095° (Or) 7.6657x10-3+j0.

attenuation constant, α = 7.6657x10-3^ Np/Km

and phase constant, β = 0.03636 rad/Km

Reflection Coefficient, K

R O

R O

Z Z

Z Z

K

  1. 557 j 0. 0656 0. 5609 173. 28

200 696. 06 10. 84

K = − + = ∠
K=0.5609 ∠ 173.28 °

e e e βl e ( 0. 03636 )( 100 )

γl (α jβ)l αl ( 7. 665710 )( 100 )

3 = = ∠ = ∠

  • ×

e e ( 0. 03636 )( 100 )

γl ( 7. 665710 )( 100 )

3 = ∠

− × rad

e

γl = e0.76657^ ∠208.3°

e

γ l = 2.1524208.3 °

e e e βl e ( 0. 03636 )( 100 )

γl (α jβ)l αl ( 7. 665710 )( 100 ) 3 = = ∠− = ∠ −

− − − + − − ×

e e ( 0. 03636 )( 100 )

γl ( 7. 665710 )( 100 )

3 = ∠ −

− − − × rad

e-

γl = e-0.76657^ ∠-208.3°

e-

γ l = 0.4646-208.3 °

γl γ l

γl γ l

s o e Ke

e Ke Z Z

Z (^) s 696. 06 10. 84   

   

 

  

Z (^) s 696. 06 10. 84

PR = 0.1486 x 7.43x10-4^ W

PR = 1.1041x10-4^ W

Transmission Efficiency, 100 P

P

η S

R = ×

  1. 1041 x 10 η 3

4

× ×

η = 6.907 %

  1. A telephone cable 64 km long has a resistance of 13 Ω/km and a

capacitance of 0.008 μf /km. Calculate the attenuation constant, velocity and

wavelength of the line at 1000 Hz.

[EC2305-NOV/DEC 2016](6 Marks), [EC2305-MAY/JUN 2015](6 Marks),

[EC2305-APR/MAY/JUN 2016](4 Marks)

Solution:

Given: l=64Km, R=13 Ω/km, C=0.008 μf /km, f=1000 Hz

ω = 2πf = 2x3.14x1000 = 6280

The characteristic impedance is given by,

G jω C

R jωL Z (^) o

j( 6280 )( 0. 008 10 )

Z

o (^) − 6 ×

j 5. 024 10

Z

o (^55) × ∠

×

− −

Z

o 3

  ∠ − ×

Zo = 509.31-

°

The propagation constant is given by,

P =γ= (R +jωL)(G +jωC)

P γ ( 13 ) ( j( 6280 )( 0. 008 10 ))

− 6 = = × ×

5 P γ 13 j 5. 024 10

− = = × ×

 P γ 6. 5312 10 90

4 = = × ∠

P=γ = α+jβ = 25.56x10-3^ ∠ 45 ° (Or) 0.01807+j0.

attenuation constant, α = 0.01807 Np/Km

and phase constant, β = 0.01807 rad/Km

The velocity of propagation is given by,

β

ω v (^) p =

  1. 48 10 Km/ sec
  2. 01807

v

5 p = = ×

  1. 54 m

. 01807

2 π

β

2 π λ = = =

  1. A transmission line has L = 10 mH/m, C = 10 -7^ F/m, R = 20 Ω/m and

G =10 -5^ mho/m. Find the input impedance at a frequency of (^) 

2 π

Hz, if the

line is very long. [EC2305-NOV/DEC 2013] (6 Marks)

Solution:

Given: L = 10 mH/m, C = 10 -7^ F/m, R = 20 Ω/m and G =10 -5^ mho/m,

2 π

f

ω = 2πf = 2π x (^) 

2 π

The characteristic impedance is given by,

G jω C

R jωL Z (^) o

10 j( 5000 )( 10 10 )

20 j( 5000 )( 10 10 ) Z 5 7

3

o (^) − −

+ ×
+ ×

10 j 5 10

20 j 50 Z o (^544) × ∠

+ ×

− − −

Z (^) o

  = ∠ −

Zo = 327.59-10.

° Ω

  1. The characteristic impedance of a uniform transmission line is 2309.

ohms at a frequency of 800 Hz. At this frequency, the propagation constant is

0.054(0.0366+j0.99). Determine R and L.

[EC2305-NOV/DEC 2013] (6 Marks), [EC2305-NOV/DEC 2010] (6 Marks)

Solution:

Given: Zo=2309.6 Ω , f=800Hz, P=γ=0.054(0.0366+j0.99) = 0.054∠87.

°

ω = 2πf = 2 x 3.14 x 800 = 5024

R=jωL = ZoP = 2309.6 x 0.054∠87.

°

= 4.57+j124.