Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

study guide for calculus 2 course, Exams of Calculus

study guide for chapter 16-28 to prepare for a midterm two exam essential information given about how to solve integrals

Typology: Exams

2021/2022

Uploaded on 01/27/2024

robert-ortiz-6
robert-ortiz-6 🇺🇸

1 document

1 / 3

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Fall 2011
MA 16200
Study Guide - Exam # 2
(1) Integration via Partial Fractions: Use for (proper) rational functions R(x)
Q(x);
If degree R(x)degree Q(x), i.e. rational function is improper, then do long division before
using partial fractions.
(2) Integration via Clever Substitutions/Using Integral Tables: Use a substitution to transform
integral into a form to be able to use another integral techniques (Substitution Method,
Integration by Parts, Trig Integrals, Trig Subsitution Method, etc) or use inte-
gral tables.
(3) Approximating definite integrals Zb
a
f(x)dx.
Let x=ba
n, xk=a+kxand xk=1
2(xk1+xk) (Note that x0=aand xn=b)
(a) Midpoint Rule:Zb
a
f(x)dx Mn= (∆x) [f(x1) + f(x2) + ···+f(xn)]
(b) Trapezoidal Rule:Zb
a
f(x)dx Tn=x
2[f(x0) + 2f(x2) + 2f(x3) + ···+ 2f(xn1) + f(xn)]
(c) Simpson’s Rule: Only works for neven.
Zb
a
f(x)dx Sn=x
3[f(x0) + 4f(x2) + 2f(x3) + ···+ 2f(xn2) + 4f(xn1) + f(xn)]
(4) Improper integrals: Type I (unbounded intervals) Z
a
f(x)dx , Zb
−∞
f(x)dx or Z
−∞
f(x)dx;
Improper integrals of Type II (discontinuous integrand at one or both endpoints) Zb
a
f(x)dx.
Comparison Theorem: Let f(x) and g(x) be continuous for xa.
(a) If 0 f(x)g(x) for xaand Z
a
g(x)dx converges =Z
a
f(x)dx also converges.
(b) If 0 g(x)f(x) for xaand Z
a
g(x)dx diverges =Z
a
f(x)dx also diverges.
(5) Arc length L=Zb
aq1 + (f(x))2dx or L=Zd
cq1 + (g(y))2dy.
(6) Surface area of revolution: S=Z2π{ribbon radius}ds or S=Z2πr ds,
where ds =q1 + (f(x))2dx or ds =q1 + (g(y))2dy.
x
y
x
y
y = f(x)
ds ds
r
rx = g(y)
1
pf3

Partial preview of the text

Download study guide for calculus 2 course and more Exams Calculus in PDF only on Docsity!

Fall 2011

MA 16200

Study Guide - Exam # 2

(1) Integration via Partial Fractions: Use for (proper) rational functions

R(x) Q(x)

If degree R(x) ≥ degree Q(x), i.e. rational function is improper, then do long division before using partial fractions.

(2) Integration via Clever Substitutions/Using Integral Tables: Use a substitution to transform

integral into a form to be able to use another integral techniques (Substitution Method, Integration by Parts, Trig Integrals, Trig Subsitution Method, etc) or use inte- gral tables.

(3) Approximating definite integrals

∫ (^) b

a

f (x) dx.

Let ∆x =

b − a n

, xk = a + k ∆x and xk = 12 (xk− 1 + xk) (Note that x 0 = a and xn = b)

(a) Midpoint Rule:

∫ (^) b

a

f (x) dx ≈ Mn = (∆x) [f (x 1 ) + f (x 2 ) + · · · + f (xn)]

(b) Trapezoidal Rule:

∫ (^) b

a

f (x) dx ≈ Tn =

( ∆x 2

) [f (x 0 ) + 2f (x 2 ) + 2f (x 3 ) + · · · + 2f (xn− 1 ) + f (xn)] (c) Simpson’s Rule: Only works for n even. ∫ (^) b

a

f (x) dx ≈ Sn =

( (^) ∆x

3

) [f (x 0 ) + 4f (x 2 ) + 2f (x 3 ) + · · · + 2f (xn− 2 ) + 4f (xn− 1 ) + f (xn)]

(4) Improper integrals: Type I (unbounded intervals)

∫ (^) ∞

a

f (x) dx ,

∫ (^) b

−∞

f (x) dx or

∫ (^) ∞

−∞

f (x) dx;

Improper integrals of Type II (discontinuous integrand at one or both endpoints)

∫ (^) b

a

f (x) dx.

Comparison Theorem: Let f (x) and g(x) be continuous for x ≥ a. (a) If 0 ≤ f (x) ≤ g(x) for x ≥ a and

∫ (^) ∞

a

g(x) dx converges =⇒

∫ (^) ∞

a

f (x) dx also converges.

(b) If 0 ≤ g(x) ≤ f (x) for x ≥ a and

∫ (^) ∞

a

g(x) dx diverges =⇒

∫ (^) ∞

a

f (x) dx also diverges.

(5) Arc length L =

∫ (^) b

a

√ 1 + (f ′(x))^2 dx or L =

∫ (^) d

c

√ 1 + (g′(y))^2 dy.

(6) Surface area of revolution: S =

∫ 2 π {ribbon radius} ds or S =

∫ 2 πr ds,

where ds =

√ 1 + (f ′(x))^2 dx or ds =

√ 1 + (g′(y))^2 dy.

x

y

x

y

y = f(x) ds (^) ds r

r (^) x = g(y)

1

(7) Center of mass of a system of discrete masses m 1 , m 2 , · · · , mn located at (x 1 , y 1 ), (x 2 , y 2 ), · · · , (xn, yn)

is (x, y), where

x =

My M

∑^ n

k=

mkxk

∑^ n

k=

mk

, y =

Mx M

∑^ n

k=

mkyk

∑^ n

k=

mk

Mx = moment of system about the x−axis; My = moment of system about the y−axis; M = total mass of the system.

(8) Moments, center of mass (center of mass = centroid if density ρ = constant).

(a) Lamina defined by y = f (x), a ≤ x ≤ b and ρ = constant:

x =

My M

∫ (^) b

a

xρf (x) dx ∫ (^) b

a

ρf (x) dx

∫ (^) b

a

xf (x) dx ∫ (^) b

a

f (x) dx

y =

Mx M

∫ (^) b

a

ρ {f (x)}^2 dx ∫ (^) b

a

ρf (x) dx

∫ (^) b

a

{f (x)}^2 dx ∫ (^) b

a

f (x) dx











 







 (x, (^12) f(x))

y = f(x)

y

a (^) b x

f(x)

dx dM = ρ f(x)dx

(b) Lamina between two curves by y = f (x), y = g(x), a ≤ x ≤ b and ρ = constant:

x =

My M

∫ (^) b

a

xρ(f (x) − g(x)) dx ∫ (^) b

a

ρ(f (x) − g(x)) dx

∫ (^) b

a

x(f (x) − g(x)) dx ∫ (^) b

a

(f (x) − g(x)) dx

y =

Mx M

∫ (^) b

a

ρ

( {f (x)}^2 − {g(x)}^2

) dx ∫ (^) b

a

ρ(f (x) − g(x)) dx

∫ (^) b

a

( {f (x)}^2 − {g(x)}^2

) dx ∫ (^) b

a

(f (x) − g(x)) dx

























y = f(x)

y

a x

y = g(x) b

(x, (^12) {f(x)+g(x)})

dx

(f(x)−g(x))

dM = (^) ρ (f(x)−g(x))dx