Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Study Guide for Experiment Design and Analysis | PHYS 341, Exams of Physics

Material Type: Exam; Class: Design of Experiments; Subject: Physics; University: Christopher Newport University; Term: Unknown 1989;

Typology: Exams

2009/2010

Uploaded on 02/24/2010

koofers-user-ok5-2
koofers-user-ok5-2 🇺🇸

5

(1)

10 documents

1 / 2

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
My table
pf2

Partial preview of the text

Download Study Guide for Experiment Design and Analysis | PHYS 341 and more Exams Physics in PDF only on Docsity!

My table

Test

Condition

Test Statistic

Tests of Hypothesis

Confidence Intervals

χ 2

χ

n 2 ( α )

σ 2 <

(n −

s 2

χ n 2 (α )

Single Variance

Normal Distribution

χ 2 =^

(n −

s 2

σ (^2)

χ 2 < χ^

n 2 ( (^) −

(^) α )

σ 2

(n −

s 2

χ n 2 ( − α )

χ n 2 ( 2 α (^) ) (^) < χ

2

χ^

n 2 ( (^) −

2 α (^) )

(n −

s 2

χ n 2 ( 2 α (^) )

< σ

2 <^

( n −

s 2

χ n 2 ( − 2 α (^) )

Normal Distributions

F > F

ν 1 ν 2 (^) ( α )

Two Variances

ν 1 (^) =

(^) n 1 (^) −

(^1)

F

s 12

s 22

F < F

ν 1 ν (^2) ( (^) −

(^) α )

ν 2 (^) =

(^) n 2 (^) −

(^1)

F

ν 1 ν 2 ( 2 α (^) ) (^) < F < F

ν 1 ν 2 (^) ( (^) −

2 α (^) )

z > z

α )

¯y < μ

0 (^) +

(^) z ( α ) √σ n

Single Mean

σ Known

z (^) =

¯y − μ 0

n√^ σ

z > z

(^) α )

¯y > μ

0 (^) −

(^) z ( α ) √σ n

z ( 2 α (^) ) (^) < z < z

2 α (^) )

¯y (^) =

(^) μ 0 (^) ±

(^) z ( 2 α (^) )

σ

√ n

t > t

n ( α )

¯y < μ

0 (^) +

(^) t n ( α ) s

√ n

Single Mean

σ Unknown

t (^) =

¯y − μ 0

s

√ n

t > t

n ( (^) −

(^) α )

¯y > μ

0 (^) −

(^) t n ( α ) s

√ n

t n ( 2 α (^) ) (^) < t < t

n ( (^) −

2 α (^) )

¯y (^) =

(^) μ 0 (^) ±

(^) t n ( 2 α (^) )

s

√ n

Independent Samples

z > z

α )

y 1 (^) −

(^) ¯y 2 ) (^) < z

α ) √

σ^ (^12)

n (^1)

σ (^22)

n 2

Two Means

σ (^12) (^) , σ

22 Known

z

¯y 1 − ¯y 2

σ^ (^12)

n (^1)

(^) σ 22

n 2

z > z

(^) α )

y 1 (^) −

(^) ¯y 2 ) (^) > z

(^) α ) √

σ^ 12

n 1

σ 22

n 2

z ( 2 α (^) ) (^) < z < z

2 α (^) )

y 1 (^) −

(^) ¯y 2 ) =

z ( 2 α (^) ) √

σ^ 12

n 1

(^) σ 22

n 2

Independent Samples

t > t

n 1 /n 2 (^) ( α )

y 1 (^) −

(^) ¯y 2 ) (^) < t

n 1 /n 2 (^) ( α ) √

(^ n 1 −

s 12 +( n 2 −

s 22

n 1

n 2 − 2

(

1 n^1

2 n^1 )

Two Means

σ (^1 ) , σ

(^22) Unknown,

t (^) =

¯y 1 − ¯y 2

(^ n 1 −

1 s 2 +( n 2 −

2 s 2

n 1

n 2 − 2

( n 1 1 (^) +

2 n^1 )

t > t

n 1 /n 2 (^) ( (^) −

(^) α )

y 1 (^) −

(^) ¯y 2 ) (^) > t

n 1 /n (^2) ( (^) −

(^) α ) √

(^ n 1 −

s 12 +( n 2 −

s 22

n 1

n 2 − 2

( n 1 1

2 n^1 )

but Equal

t n 1 /n 2 (^) ( 2 α (^) ) (^) < t < t

n 1 /n (^2) ( (^) −

2 α (^) )

y 1 (^) −

¯y 2 ) =

t n 1 /n (^2) ( 2 α (^) ) √

(^ n 1 −

s 12 +( n 2 −

s 22

n 1

n 2 − 2

(

1 n^1

2 n^1 )

Independent Samples

t > t

n dof

(^) ( α )

y 1 (^) −

(^) ¯y 2 ) (^) < t

n dof

(^) ( α ) √

s^ 12

n (^1)

s 22

n 2

Two Means

σ 12 (^) , σ

22 Unknown, Unequal

t (^) =

¯y 1 − ¯y 2

s^ 12

n (^1)

(^) s 22

n 2

t > t

n dof

(^) (

(^) −

(^) α )

y 1 (^) −

(^) ¯y 2 ) (^) > t

n dof

(^) (

(^) −

(^) α ) √

s^ 12

n 1

s 22

n 2

n dof

( s 12

n 1 (^) + (^) s 22

n (^2) )

(

1 n 1 s 2

n 1

(^) +

s 22

n 2

n 2

(^) ) − (^2)

t n dof

(^) ( 2 α (^) ) (^) < t < t

n dof

(^) (

(^) −

(^) α 2 (^) )

y 1 (^) −

(^) ¯y 2 ) =

t n dof

(^) ( 2 α (^) ) √

s^ 12

n (^1)

s 22

n 2

t < t

n ( α )

d < t¯

n ( α ) (^) s d

√ n

Two Means

Correlated Samples

t (^) =

d^ sd¯

√ n

t > t

n ( (^) −

(^) α )

d > t¯

n ( (^) −

(^) α ) (^) s d

√ n

d (^) =

(^) y 1 (^) −

(^) y 2

t n ( 2 α (^) ) (^) < t < t

n ( (^) −

2 α (^) )

d¯ (^) =

(^) ±

t n ( 2 α (^) ) (^) s d

√ n