Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Trigonometry: Sum, Difference, Double & Half Angle Formulas for Sine, Cosine & Tangent, Study notes of Trigonometry

Formulas and examples for finding the values of sine, cosine and tangent functions at double and half angles. It also covers solving trigonometric equations.

Typology: Study notes

2021/2022

Uploaded on 09/12/2022

ambau
ambau 🇺🇸

4.5

(11)

250 documents

1 / 29

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
1
Section 6.1 - Sum and Difference Formulas
Note:
)sin()sin()sin( BABA
+
+
)cos()cos()cos( BABA
+
+
Sum and Difference Formulas for Sine, Cosine and Tangent
ABBABA cossincossin)sin(
+
=
+
ABBABA cossincossin)sin(
=
BABABA sinsincoscos)cos(
=
+
BABABA sinsincoscos)cos(
+
=
B
A
BA
BA
tan
tan
1
tantan
)tan(
+
=+
B
A
BA
BA
tan
tan
1
tantan
)tan( +
=
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17
pf18
pf19
pf1a
pf1b
pf1c
pf1d

Partial preview of the text

Download Trigonometry: Sum, Difference, Double & Half Angle Formulas for Sine, Cosine & Tangent and more Study notes Trigonometry in PDF only on Docsity!

Section 6.1 - Sum and Difference Formulas

Note: sin( A + B )≠sin( A )+sin( B )

cos( A + B )≠cos( A )+cos( B )

Sum and Difference Formulas for Sine, Cosine and Tangent

sin( A + B )=sin A cos B +sin B cos A

sin( AB )=sin A cos B −sin B cos A

cos( A + B )=cos A cos B −sin A sin B

cos( AB )=cos A cos B +sin A sin B

A B

A B

A B

1 tan tan

tan tan tan( ) −

A B

A B

A B

1 tan tan

tan tan tan( )

Example 1: Simplify each:

a. cos( x + 60 )° =

b. sin sin 4 4

x x

 +^  −^  − 

Example 3 : Simplify each.

a. sin10 cos 55° ° − sin 55 cos10° °

b.

cos cos sin sin 12 12 12 12

c. − ° °

1 tan 40 tan 5

tan 40 tan 5

d.

tan 80 tan

1 tan 80 tan

Example 4: Find the exact value of each. (Hint: use sum/difference formulas)

a. 0 sin 15

b. (^)  

cos

Example 5: Suppose that 5

sin α = and

cos β = where

< α < β<. Find each of

these:

a. sin( α + β)

b. cos( α − β)

Example 6: Suppose

cos 5

α = and

tan 6

β = − where π < α β, < 2 π. Find

a. cos( α + β)

b. tan( α + β)

Double – Angle Formulas

sin( 2 A )= 2 sin A cos A

A A A

2 2 cos( 2 )= cos −sin (Also: A A A 2 2 cos( 2 )= 2 cos − 1 = 1 − 2 sin )

A

A

A

2 1 tan

2 tan tan( 2 ) −

Now we’ll look at the types of problems we can solve using these identities.

Example 1: Suppose that

cos 7

α = − and α π

. Find

a. cos( 2 α)

b. sin( 2 α)

c. tan( 2 α)

c. (^2)

2 tan

1 tan 15

d. 1 2 sin ( 6 )

2 − A

Half – Angle Formulas

1 cos

2

sin

A − A

1 cos

2

cos

A + A

A

A

A

A A

sin

1 cos

1 cos

sin

2

tan

Note: In the half-angle formulas the ± symbol is intended to mean either positive or

negative but not both, and the sign before the radical is determined by the quadrant in

which the angle 2

A

terminates.

Now we’ll look at the kinds of problems we can solve using half-angle formulas.

c. (^)  

tan

Example 4: Answer these questions for θ π

cos = < <.

a. In which quadrant does the terminal side of the angle lie?

b. Complete the following: ___ 2

___ < <

c. In which quadrant does the terminal side of 2

lie?

d. Determine the sign of (^)  

sin

e. Determine the sign of (^)  

cos

f. Find the exact value of (^)  

sin

g. Find the exact value of (^)  

cos

h. Find the exact value of (^)  

tan

  • Example 1: a) Solve the equation in the interval [ 0 , 2 π ): 2 cos x =−
  • b) Find all solutions to the equation: 2 cos x =−
  • Example 2: a) Solve the equation in the interval [0, π ): tan x =−
  • b) Find all solutions to the equation: tan x =−

Example 3: Solve the equation in the interval [ 0 , π ): 2sin(2 ) x = 1

Example 4: Solve the equation in the interval [ 0 , 2 π ):

2 csc x = 4