



Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
Fischer esterification reaction is the reaction in which isopentyl alcohol react with acetic acid in this way e isopentyl acetate is formed
Typology: Lab Reports
1 / 6
This page cannot be seen from the preview
Don't miss anything!
Experiment
To prepare isopentyl acetate from isopentyl alcohol and acetic acid by the Fischer esterification reaction.
Esters are derivatives of carboxylic acids in which the acyl carbon bears an alkoxy substituent (โOR) rather than the hydroxyl substituent (โOH) of the acid. Simple esters tend to have pleasant, fruity odors and are widely used as flavors and fragrances. Table 1 below shows the flavors or fragrances associated with some esters. Ester Scent Isopentyl acetate Banana Isobutyl formate Raspberry Isobutyl propionate Rum n โpropyl acetate Pear Methyl butyrate Apple Methyl anthranilate Grape Methyl salicylate Wintergreen Ethyl butyrate Pineapple Ethyl phenyl acetate Honey Benzyl acetate Peach Benzyl butyrate Cherry Octyl acetate Orange Table 1 Esters and their corresponding scents
The volatile compounds in natural fruits and flowers are usually complex mixtures of compounds, where esters frequently predominate. Many artificial flavorings contain esters or mixtures of esters. For example, the volatile oil of ripe pineapple contains several esters, as shown in Table 2. Table 2 Composition of the volatile oil of ripe pineapple Isopentyl acetate is known as banana oil because of its characteristic odor. This ester has also been shown to be one of the active substances in the alarm pheromone of the honeybee. When a honeybee worker stings an intruder, an alarm pheromone is secreted along with the venom. The pheromone causes other bees to become aggressive and attack the intruder. Esterification generally refers to the formation of esters from alcohol and carboxylic acids, as shown in Equation 1. The reaction proceeds by way of a nucleophilic substitution at the acyl carbon of the carboxylic acid. When catalyzed by a strong acid, usually sulfuric acid or p โtoluenesulfonic acid, the reaction is called the Fischer esterification. The reaction mechanism is shown in Equations 2 โ6. Equation 2 shows the protonation of the acyl oxygen of the carboxylic acid. The protonation activates the acyl carbon toward nucleophilic attack. Equation 3 shows the nucleophilic attack at the acyl carbon by the oxygen atom of the alcohol to form a tetrahedral intermediate. Equation 4 shows a proton transfer to the hydroxyl oxygen of the carboxyl group. This protonation converts the hydroxyl group into the good leaving group, water. Equation 5 shows the loss of water forming the protonated carboxylic acid
branching at the ฮฑโ or ฮฒโcarbon of the acid slows the rate of esterification. For example, the relative rates of esterification with methanol follow the order: Sterically hindered alcohols also react more slowly in the esterification reaction. The relative rates for esterification of alcohols with acetic acid follow the order: Fischer esterification is an example of an acyl transfer reaction. The acyl group from the acid is transferred to the alcohol. Acid chlorides and anhydrides also serve as acylating agents. Because acid chlorides and anhydrides contain good leaving groups, these compounds are very reactive toward nucleophilic substitution by an alcohol, as shown in Equations 7 โ8. The Fischer esterification is conducted at reflux. The purpose of reflux is to heat a reaction mixture at its boiling temperature to form products, without losing any of the compounds in the reaction flask. In practice, a condenser is set vertically into the top of the reaction flask. Any compound that vaporizes will condense when it enters the cool environment of the reflux condenser and will then drain back into the reaction flask. Reflux apparatus using glassware for a semiโ microscale technique is used in the procedure. In this experiment, you will prepare isopentyl acetate by reacting an excess of acetic acid with isopentyl alcohol. You will use sulfuric acid to catalyze the reaction. After the reaction is complete, you will remove the excess acetic acid and sulfuric acid from the reaction mixture by extraction with sodium hydrogen carbonate.