Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Table of Fourier Transform Pairs Cheat Sheet, Cheat Sheet of Signals and Systems

Actual functions and Fourier transforms in a table

Typology: Cheat Sheet

2020/2021
On special offer
30 Points
Discount

Limited-time offer


Uploaded on 04/23/2021

zeb
zeb 🇺🇸

4.6

(26)

231 documents

1 / 8

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Signals & Systems - Reference Tables 1
Table of Fourier Transform Pairs
Function, f(t) Fourier Transform, F(w)
Definition of Inverse Fourier Transform
ò
¥
¥-
=ww
p
wdeFtf tj
)(
2
1
)(
Definition of Fourier Transform
ò
¥
¥-
-
=dtetfF tjw
w)()(
)( 0
ttf -0
)( tj
eF w
w
-
tj
etf 0
)( w)( 0
ww -F
)( t
f
a
)(
1
a
w
a
F
)(t
F
)(2 wp -
f
n
n
dt
tfd )( )()( ww Fj n
)()( tfjt n
-
n
n
d
Fd
w
w)(
ò
¥-
t
df tt )( )()0(
)( wdp
w
wF
j
F+
)(td1
tj
e0
w)(2 0
wwpd -
(t)sgn
wj
2
pf3
pf4
pf5
Discount

On special offer

Partial preview of the text

Download Table of Fourier Transform Pairs Cheat Sheet and more Cheat Sheet Signals and Systems in PDF only on Docsity!

Signals & Systems - Reference Tables (^) 1

Table of Fourier Transform Pairs

Function, f(t) (^) Fourier Transform, F(  )

Definition of Inverse Fourier Transform







 f t F e d

j t ( ) 2

Definition of Fourier Transform







 F  f te dt

j  t (  ) ()

f ( t  t 0 ) F (  ) e  j  t^0

j t f ( t ) e^0

F   0

f ( t ) ( )

F

F ( t ) 2  f ()

n

n

dt

d f ( t ) ( j  ) F ()

n

( jt ) f ( t )

n  n

n

d

d F



 

t f ( ) d  (^0 ) ( )

F

j

F

 ( t ) 1

j t e^0

sgn (t)

j 

Fourier Transform Table UBC M267 Resources for 2005

F (t) F̂ (ω) Notes (0)

f (t)

∫ (^) ∞

−∞

f (t)e−iωt^ dt Definition. (1)

1 2 π

∫ (^) ∞

−∞

̂ f (ω)eiωt^ dω f̂ (ω) Inversion formula. (2)

f̂ (−t) 2 πf (ω) Duality property. (3)

e−atu(t)

1 a + iω

a constant, <e(a) > 0 (4)

e−a|t|^

2 a a^2 + ω^2

a constant, <e(a) > 0 (5)

β(t) =

{ 1 , if |t| < 1, 0 , if |t| > 1

2 sinc(ω) = 2

sin(ω) ω

Boxcar in time. (6)

1 π

sinc(t) β(ω) Boxcar in frequency. (7)

f ′(t) iω f̂ (ω) Derivative in time. (8)

f ′′(t) (iω)^2 f̂ (ω) Higher derivatives similar. (9)

tf (t) i

d dω

̂ f (ω) Derivative in frequency. (10)

t^2 f (t) i^2

d^2 dω^2

̂ f^ (ω)^ Higher derivatives similar.^ (11)

eiω^0 tf (t) f̂ (ω − ω 0 ) Modulation property. (12)

f

( t − t 0 k

) ke−iωt^0 f̂ (kω) Time shift and squeeze. (13)

(f ∗ g)(t) f̂ (ω)̂g(ω) Convolution in time. (14)

u(t) =

{ 0 , if t < 0 1 , if t > 0

1 iω

  • πδ(ω) Heaviside step function. (15)

δ(t − t 0 )f (t) e−iωt^0 f (t 0 ) Assumes f continuous at t 0. (16)

eiω^0 t^2 πδ(ω − ω 0 ) Useful for sin(ω 0 t), cos(ω 0 t). (17)

Convolution: (f ∗ g)(t) =

∫ (^) ∞

−∞

f (t − u)g(u) du =

∫ (^) ∞

−∞

f (u)g(t − u) du.

Parseval:

∫ (^) ∞

−∞

|f (t)|^2 dt =

1 2 π

∫ (^) ∞

−∞

∣ ∣ ∣̂f^ (ω)

∣ ∣ ∣

2 dω.

Signals & Systems - Reference Tables (^) 3

u ( t ) e sin( 0 t )

t 



2 2 0

0

 ( )

  j

t e



2 2

t^2 /( 2 ^2 ) e

 2 2 / 2 2

   

 e

t u te

 ( )

  j 

t u tte

 ( ) 2 ( )

  j 

 Trigonometric Fourier Series

^ ^ 





1

( ) 0 cos( 0 ) sin( 0 ) n

f t a an  nt bn  nt

where



 

T

n

T T n

f t nt dt T

b

f t nt dt T

f tdt a T

a

0

0

0

0 0 0

()sin( )

()cos( ) ,and

 Complex Exponential Fourier Series

 (^) 







T j nt n n

j nt n f te dt T

f t Fe F 0

( )  ,where^1 () ^0

Signals & Systems - Reference Tables (^) 4

Some Useful Mathematical Relationships

cos( )

jx jx e e x

  

j

e e x

jx jx

sin( )

  

cos( x  y )cos( x )cos( y )sin( x )sin( y )

sin( x  y )sin( x )cos( y )cos( x )sin( y )

cos( 2 ) cos ( ) sin ( )

2 2 x  x  x

sin( 2 x )  2 sin( x )cos( x )

2 cos ( ) 1 cos( 2 )

2 x   x

2 sin ( ) 1 cos( 2 )

2 x   x

cos ( ) sin ( ) 1

2 2 x  x 

2 cos( x ) cos( y )cos( x  y )cos( x  y )

2 sin( x ) sin( y )cos( x  y )cos( x  y )

2 sin( x ) cos( y )sin( x  y )sin( x  y )

Your continued donations keep Wikibooks running!

Engineering Tables/Fourier Transform Table 2

From Wikibooks, the open-content textbooks collection

< Engineering Tables Jump to: navigation, search

Signal

Fourier transform unitary, angular frequency

Fourier transform unitary, ordinary frequency

Remarks

10 The rectangular pulse and the normalized sinc function

11

Dual of rule 10. The rectangular function is an idealized low-pass filter, and the sinc function is the non-causal impulse response of such a filter.

12 tri is the triangular function

13 Dual of rule 12.

14

Shows that the Gaussian function exp( - a t

2 ) is its own Fourier transform. For this to be integrable we must have Re(a) > 0.

common in optics

a>

the transform is the function itself

J 0 (t) is the Bessel function of first kind of order 0, rect is the rectangular function

it's the generalization of the previous transform; Tn (t) is the Chebyshev polynomial of the first kind.

Un (t) is the Chebyshev polynomial of the second kind

Retrieved from "http://en.wikibooks.org/wiki/Engineering_Tables/Fourier_Transform_Table_2"

Category: Engineering Tables

Views