Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Tables and formulas for Statics, Cheat Sheet of Statistics

Statistics formula sheet with distributions, producing data, probability and sampling distribution, basic inference and chi-square test.

Typology: Cheat Sheet

2021/2022

Uploaded on 02/07/2022

stefan18
stefan18 🇺🇸

4.2

(35)

279 documents

1 / 11

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
TABLES AND FORMULAS FOR MOORE
Basic Practice of Statistics
Exploring Data: Distributions
Look for overall pattern (shape, center, spread)
and deviations (outliers).
Mean (use a calculator):
x=x1+x2+···+xn
n=1
n!xi
Standard deviation (use a calculator):
s="1
n1!(xix)2
Median: Arrange all observations from smallest
to largest. The median Mis located (n+ 1)/2
observations from the beginning of this list.
Quartiles: The first quartile Q1is the median of
the observations whose position in the ordered
list is to the left of the location of the overall
median. The third quartile Q3is the median of
the observations to the right of the location of
the overall median.
Five-number summary:
Minimum,Q
1, M, Q3,Maximum
Standardized value of x:
z=xµ
σ
Exploring Data: Relationships
Look for overall pattern (form, direction,
strength) and deviations (outliers, influential
observations).
Correlation (use a calculator):
r=1
n1!#xix
sx$%yiy
sy&
Least-squares regression line (use a calculator):
ˆy=a+bx with slope b=rsy/sxand intercept
a=ybx
Residuals:
residual = observed ypredicted y=yˆy
Producing Data
Simple random sample: Choose an SRS by
giving every individual in the population a
numerical label and using Table B of random
digits to choose the sample.
Randomized comparative experiments:
Random
Allocation
!
!"
#
#$
Group 1
Group 2
%
%
Treatment 1
Treatment 2
#
#$
!
!"
Observe
Response
Probability and Sampling
Distributions
Probability rules:
Any probability satisfies 0 P(A)1.
The sample space Shas probability
P(S) = 1.
If events Aand Bare disjoint, P(Aor B)=
P(A)+P(B).
For any event A,P(Adoes not occur) =
1P(A)
pf3
pf4
pf5
pf8
pf9
pfa

Partial preview of the text

Download Tables and formulas for Statics and more Cheat Sheet Statistics in PDF only on Docsity!

TABLES AND FORMULAS FOR MOORE

Basic Practice of Statistics

Exploring Data: Distributions

  • Look for overall pattern (shape, center, spread)

and deviations (outliers).

  • Mean (use a calculator):

x =

x 1 + x 2 + · · · + xn

n

n

xi

  • Standard deviation (use a calculator):

s =

n − 1

(xi − x)^2

  • Median: Arrange all observations from smallest

to largest. The median M is located (n + 1)/ 2

observations from the beginning of this list.

  • Quartiles: The first quartile Q 1 is the median of

the observations whose position in the ordered

list is to the left of the location of the overall

median. The third quartile Q 3 is the median of

the observations to the right of the location of

the overall median.

  • Five-number summary:

Minimum, Q 1 , M, Q 3 , Maximum

  • Standardized value of x:

z =

x − μ

Exploring Data: Relationships

  • Look for overall pattern (form, direction,

strength) and deviations (outliers, influential

observations).

  • Correlation (use a calculator):

r =

n − 1

∑ (^ xi − x

sx

) (^

y i − y

sy

  • Least-squares regression line (use a calculator):

yˆ = a + bx with slope b = rsy /sx and intercept

a = y − bx

  • Residuals:

residual = observed y − predicted y = y − yˆ

Producing Data

  • Simple random sample: Choose an SRS by

giving every individual in the population a

numerical label and using Table B of random

digits to choose the sample.

  • Randomized comparative experiments:

Random

Allocation

Group 1

Group 2

Treatment 1

Treatment 2

Observe

Response

Probability and Sampling

Distributions

  • Probability rules:
    • Any probability satisfies 0 ≤ P (A) ≤ 1.
    • The sample space S has probability

P (S) = 1.

  • If events A and B are disjoint, P (A or B) =

P (A) + P (B).

  • For any event A, P (A does not occur) =

1 − P (A)

  • Sampling distribution of a sample mean:
    • x has mean μ and standard deviation σ/

n.

  • x has a Normal distribution if the popula-

tion distribution is Normal.

  • Central limit theorem: x is approximately

Normal when n is large.

Basics of Inference

  • z confidence interval for a population mean

(σ known, SRS from Normal population):

x ± z ∗^

n

z ∗^ from N (0, 1)

  • Sample size for desired margin of error m:

n =

z ∗^ σ

m

  • z test statistic for H 0 : μ = μ 0 (σ known, SRS

from Normal population):

z =

x − μ 0

n

P -values from N (0, 1)

Inference About Means

  • t confidence interval for a population mean (SRS

from Normal population):

x ± t ∗^

s

n

t ∗^ from t(n − 1)

  • t test statistic for H 0 : μ = μ 0 (SRS from Normal

population):

t =

x − μ 0

s/

n

P -values from t(n − 1)

  • Matched pairs: To compare the responses to the

two treatments, apply the one-sample t proce-

dures to the observed differences.

  • Two-sample t confidence interval for μ 1 − μ 2 (in-

dependent SRSs from Normal populations):

(x 1 − x 2 ) ± t ∗

s^21

n 1

s^22

n 2

with conservative t ∗^ from t with df the smaller

of n 1 − 1 and n 2 − 1 (or use software).

  • Two-sample t test statistic for H 0 : μ 1 = μ 2

(independent SRSs from Normal populations):

t =

x 1 − x 2

s^21

n 1

s^22

n 2

with conservative P -values from t with df the

smaller of n 1 − 1 and n 2 − 1 (or use software).

Inference About Proportions

  • Sampling distribution of a sample proportion:

when the population and the sample size are

both large and p is not close to 0 or 1, ˆp is ap-

proximately Normal with mean p and standard

deviation

p(1 − p)/n.

  • Large-sample z confidence interval for p:

pˆ ± z ∗

p ˆ(1 − pˆ)

n

z ∗^ from N (0, 1)

Plus four to greatly improve accuracy: use the

same formula after adding 2 successes and two

failures to the data.

  • z test statistic for H 0 : p = p 0 (large SRS):

z =

pˆ − p 0

p 0 (1 − p 0 )

n

P -values from N (0, 1)

  • Sample size for desired margin of error m:

n =

z ∗

m

p ∗^ (1 − p ∗^ )

where p ∗^ is a guessed value for p or p∗^ = 0.5.

  • Large-sample z confidence interval for p 1 − p 2 :

(ˆp 1 − pˆ 2 ) ± z ∗^ SE z ∗^ from N (0, 1)

where the standard error of ˆp 1 − pˆ 2 is

SE =

p ˆ 1 (1 − pˆ 1 )

n 1

pˆ 2 (1 − pˆ 2 )

n 2

Plus four to greatly improve accuracy: use the

same formulas after adding one success and one

failure to each sample.

690 TABLES

Table entry for z is the area under the standard Normal curve to the left of z.

Table entry

z

Table entry for z is the area under the standard Normal curve to the left of z.

Table entry

z

Table entry for C is the critical value t ∗^ required for confidence level C. To approximate one- and two-sided P -values, compare the value of the t statistic with the critical values of t ∗^ that match the P -values given at the bottom of the table. −t* t*

2

Area C Tail area 1 − C

T A B L E C t distribution critical values

CONFIDENCE LEVEL C

DEGREES OF FREEDOM 50% 60% 70% 80% 90% 95% 96% 98% 99% 99.5% 99.8% 99.9% 1 1.000 1.376 1.963 3.078 6.314 12.71 15.89 31.82 63.66 127.3 318.3 636. 2 0.816 1.061 1.386 1.886 2.920 4.303 4.849 6.965 9.925 14.09 22.33 31. 3 0.765 0.978 1.250 1.638 2.353 3.182 3.482 4.541 5.841 7.453 10.21 12. 4 0.741 0.941 1.190 1.533 2.132 2.776 2.999 3.747 4.604 5.598 7.173 8. 5 0.727 0.920 1.156 1.476 2.015 2.571 2.757 3.365 4.032 4.773 5.893 6. 6 0.718 0.906 1.134 1.440 1.943 2.447 2.612 3.143 3.707 4.317 5.208 5. 7 0.711 0.896 1.119 1.415 1.895 2.365 2.517 2.998 3.499 4.029 4.785 5. 8 0.706 0.889 1.108 1.397 1.860 2.306 2.449 2.896 3.355 3.833 4.501 5. 9 0.703 0.883 1.100 1.383 1.833 2.262 2.398 2.821 3.250 3.690 4.297 4. 10 0.700 0.879 1.093 1.372 1.812 2.228 2.359 2.764 3.169 3.581 4.144 4. 11 0.697 0.876 1.088 1.363 1.796 2.201 2.328 2.718 3.106 3.497 4.025 4. 12 0.695 0.873 1.083 1.356 1.782 2.179 2.303 2.681 3.055 3.428 3.930 4. 13 0.694 0.870 1.079 1.350 1.771 2.160 2.282 2.650 3.012 3.372 3.852 4. 14 0.692 0.868 1.076 1.345 1.761 2.145 2.264 2.624 2.977 3.326 3.787 4. 15 0.691 0.866 1.074 1.341 1.753 2.131 2.249 2.602 2.947 3.286 3.733 4. 16 0.690 0.865 1.071 1.337 1.746 2.120 2.235 2.583 2.921 3.252 3.686 4. 17 0.689 0.863 1.069 1.333 1.740 2.110 2.224 2.567 2.898 3.222 3.646 3. 18 0.688 0.862 1.067 1.330 1.734 2.101 2.214 2.552 2.878 3.197 3.611 3. 19 0.688 0.861 1.066 1.328 1.729 2.093 2.205 2.539 2.861 3.174 3.579 3. 20 0.687 0.860 1.064 1.325 1.725 2.086 2.197 2.528 2.845 3.153 3.552 3. 21 0.686 0.859 1.063 1.323 1.721 2.080 2.189 2.518 2.831 3.135 3.527 3. 22 0.686 0.858 1.061 1.321 1.717 2.074 2.183 2.508 2.819 3.119 3.505 3. 23 0.685 0.858 1.060 1.319 1.714 2.069 2.177 2.500 2.807 3.104 3.485 3. 24 0.685 0.857 1.059 1.318 1.711 2.064 2.172 2.492 2.797 3.091 3.467 3. 25 0.684 0.856 1.058 1.316 1.708 2.060 2.167 2.485 2.787 3.078 3.450 3. 26 0.684 0.856 1.058 1.315 1.706 2.056 2.162 2.479 2.779 3.067 3.435 3. 27 0.684 0.855 1.057 1.314 1.703 2.052 2.158 2.473 2.771 3.057 3.421 3. 28 0.683 0.855 1.056 1.313 1.701 2.048 2.154 2.467 2.763 3.047 3.408 3. 29 0.683 0.854 1.055 1.311 1.699 2.045 2.150 2.462 2.756 3.038 3.396 3. 30 0.683 0.854 1.055 1.310 1.697 2.042 2.147 2.457 2.750 3.030 3.385 3. 40 0.681 0.851 1.050 1.303 1.684 2.021 2.123 2.423 2.704 2.971 3.307 3. 50 0.679 0.849 1.047 1.299 1.676 2.009 2.109 2.403 2.678 2.937 3.261 3. 60 0.679 0.848 1.045 1.296 1.671 2.000 2.099 2.390 2.660 2.915 3.232 3. 80 0.678 0.846 1.043 1.292 1.664 1.990 2.088 2.374 2.639 2.887 3.195 3. 100 0.677 0.845 1.042 1.290 1.660 1.984 2.081 2.364 2.626 2.871 3.174 3. 1000 0.675 0.842 1.037 1.282 1.646 1.962 2.056 2.330 2.581 2.813 3.098 3. z ∗^ 0.674 0.841 1.036 1.282 1.645 1.960 2.054 2.326 2.576 2.807 3.091 3. One-sided P .25 .20 .15 .10 .05 .025 .02 .01 .005 .0025 .001. Two-sided P .50 .40 .30 .20 .10 .05 .04 .02 .01 .005 .002.

693

694 TABLES

Table entry for p is the critical value χ∗^ with probability p lying to its right.

χ*

Probability p

T A B L E D Chi-square distribution critical values

Two-sided p-values for t-distribution

absolute

value

d.f. (1-15)

|t|

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Two-sided p-values for t-distribution absolute value d.f. (16-30) |t| 16 17 18 19 20 21 22 23 24 25 26 27 28 29

  • z .00 .01 .02 .03 .04 .05 .06 .07 .08. T A B L E A Standard Normal cumulative proportions
  • −3.4 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003.
  • −3.3 .0005 .0005 .0005 .0004 .0004 .0004 .0004 .0004 .0004.
  • −3.2 .0007 .0007 .0006 .0006 .0006 .0006 .0006 .0005 .0005.
  • −3.1 .0010 .0009 .0009 .0009 .0008 .0008 .0008 .0008 .0007.
  • −3.0 .0013 .0013 .0013 .0012 .0012 .0011 .0011 .0011 .0010.
  • −2.9 .0019 .0018 .0018 .0017 .0016 .0016 .0015 .0015 .0014.
  • −2.8 .0026 .0025 .0024 .0023 .0023 .0022 .0021 .0021 .0020.
  • −2.7 .0035 .0034 .0033 .0032 .0031 .0030 .0029 .0028 .0027.
  • −2.6 .0047 .0045 .0044 .0043 .0041 .0040 .0039 .0038 .0037.
  • −2.5 .0062 .0060 .0059 .0057 .0055 .0054 .0052 .0051 .0049.
  • −2.4 .0082 .0080 .0078 .0075 .0073 .0071 .0069 .0068 .0066.
  • −2.3 .0107 .0104 .0102 .0099 .0096 .0094 .0091 .0089 .0087.
  • −2.2 .0139 .0136 .0132 .0129 .0125 .0122 .0119 .0116 .0113.
  • −2.1 .0179 .0174 .0170 .0166 .0162 .0158 .0154 .0150 .0146.
  • −2.0 .0228 .0222 .0217 .0212 .0207 .0202 .0197 .0192 .0188.
  • −1.9 .0287 .0281 .0274 .0268 .0262 .0256 .0250 .0244 .0239.
  • −1.8 .0359 .0351 .0344 .0336 .0329 .0322 .0314 .0307 .0301.
  • −1.7 .0446 .0436 .0427 .0418 .0409 .0401 .0392 .0384 .0375.
  • −1.6 .0548 .0537 .0526 .0516 .0505 .0495 .0485 .0475 .0465.
  • −1.5 .0668 .0655 .0643 .0630 .0618 .0606 .0594 .0582 .0571.
  • −1.4 .0808 .0793 .0778 .0764 .0749 .0735 .0721 .0708 .0694.
  • −1.3 .0968 .0951 .0934 .0918 .0901 .0885 .0869 .0853 .0838.
  • −1.2 .1151 .1131 .1112 .1093 .1075 .1056 .1038 .1020 .1003.
  • −1.1 .1357 .1335 .1314 .1292 .1271 .1251 .1230 .1210 .1190.
  • −1.0 .1587 .1562 .1539 .1515 .1492 .1469 .1446 .1423 .1401.
  • −0.9 .1841 .1814 .1788 .1762 .1736 .1711 .1685 .1660 .1635.
  • −0.8 .2119 .2090 .2061 .2033 .2005 .1977 .1949 .1922 .1894.
  • −0.7 .2420 .2389 .2358 .2327 .2296 .2266 .2236 .2206 .2177.
  • −0.6 .2743 .2709 .2676 .2643 .2611 .2578 .2546 .2514 .2483.
  • −0.5 .3085 .3050 .3015 .2981 .2946 .2912 .2877 .2843 .2810.
  • −0.4 .3446 .3409 .3372 .3336 .3300 .3264 .3228 .3192 .3156.
  • −0.3 .3821 .3783 .3745 .3707 .3669 .3632 .3594 .3557 .3520.
  • −0.2 .4207 .4168 .4129 .4090 .4052 .4013 .3974 .3936 .3897.
  • −0.1 .4602 .4562 .4522 .4483 .4443 .4404 .4364 .4325 .4286.
  • −0.0 .5000 .4960 .4920 .4880 .4840 .4801 .4761 .4721 .4681. - TABLES
    • z .00 .01 .02 .03 .04 .05 .06 .07 .08. T A B L E A Standard Normal cumulative proportions ( continued )
  • 0.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319.
  • 0.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714.
  • 0.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103.
  • 0.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480.
  • 0.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844.
  • 0.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190.
  • 0.6 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517.
  • 0.7 .7580 .7611 .7642 .7673 .7704 .7734 .7764 .7794 .7823.
  • 0.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106.
  • 0.9 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365.
  • 1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599.
  • 1.1 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810.
  • 1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997.
  • 1.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162.
  • 1.4 .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306.
  • 1.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429.
  • 1.6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535.
  • 1.7 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625.
  • 1.8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699.
  • 1.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761.
  • 2.0 .9772 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812.
  • 2.1 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854.
  • 2.2 .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887.
  • 2.3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913.
  • 2.4 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934.
  • 2.5 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951.
  • 2.6 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963.
  • 2.7 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973.
  • 2.8 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980.
  • 2.9 .9981 .9982 .9982 .9983 .9984 .9984 .9985 .9985 .9986.
  • 3.0 .9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990.
  • 3.1 .9990 .9991 .9991 .9991 .9992 .9992 .9992 .9992 .9993.
  • 3.2 .9993 .9993 .9994 .9994 .9994 .9994 .9994 .9995 .9995.
  • 3.3 .9995 .9995 .9995 .9996 .9996 .9996 .9996 .9996 .9996.
  • 3.4 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997.
    • df .25 .20 .15 .10 .05 .025 .02 .01 .005 .0025 .001. p - 1 1.32 1.64 2.07 2.71 3.84 5.02 5.41 6.63 7.88 9.14 10.83 12. - 2 2.77 3.22 3.79 4.61 5.99 7.38 7.82 9.21 10.60 11.98 13.82 15. - 3 4.11 4.64 5.32 6.25 7.81 9.35 9.84 11.34 12.84 14.32 16.27 17. - 4 5.39 5.99 6.74 7.78 9.49 11.14 11.67 13.28 14.86 16.42 18.47 20. - 5 6.63 7.29 8.12 9.24 11.07 12.83 13.39 15.09 16.75 18.39 20.51 22. - 6 7.84 8.56 9.45 10.64 12.59 14.45 15.03 16.81 18.55 20.25 22.46 24. - 7 9.04 9.80 10.75 12.02 14.07 16.01 16.62 18.48 20.28 22.04 24.32 26. - 8 10.22 11.03 12.03 13.36 15.51 17.53 18.17 20.09 21.95 23.77 26.12 27. - 9 11.39 12.24 13.29 14.68 16.92 19.02 19.68 21.67 23.59 25.46 27.88 29.
      • 10 12.55 13.44 14.53 15.99 18.31 20.48 21.16 23.21 25.19 27.11 29.59 31.
      • 11 13.70 14.63 15.77 17.28 19.68 21.92 22.62 24.72 26.76 28.73 31.26 33.
      • 12 14.85 15.81 16.99 18.55 21.03 23.34 24.05 26.22 28.30 30.32 32.91 34.
      • 13 15.98 16.98 18.20 19.81 22.36 24.74 25.47 27.69 29.82 31.88 34.53 36.
      • 14 17.12 18.15 19.41 21.06 23.68 26.12 26.87 29.14 31.32 33.43 36.12 38.
      • 15 18.25 19.31 20.60 22.31 25.00 27.49 28.26 30.58 32.80 34.95 37.70 39.
      • 16 19.37 20.47 21.79 23.54 26.30 28.85 29.63 32.00 34.27 36.46 39.25 41.
      • 17 20.49 21.61 22.98 24.77 27.59 30.19 31.00 33.41 35.72 37.95 40.79 42.
      • 18 21.60 22.76 24.16 25.99 28.87 31.53 32.35 34.81 37.16 39.42 42.31 44.
      • 19 22.72 23.90 25.33 27.20 30.14 32.85 33.69 36.19 38.58 40.88 43.82 45.
      • 20 23.83 25.04 26.50 28.41 31.41 34.17 35.02 37.57 40.00 42.34 45.31 47.
      • 21 24.93 26.17 27.66 29.62 32.67 35.48 36.34 38.93 41.40 43.78 46.80 49.
      • 22 26.04 27.30 28.82 30.81 33.92 36.78 37.66 40.29 42.80 45.20 48.27 50.
      • 23 27.14 28.43 29.98 32.01 35.17 38.08 38.97 41.64 44.18 46.62 49.73 52.
      • 24 28.24 29.55 31.13 33.20 36.42 39.36 40.27 42.98 45.56 48.03 51.18 53.
      • 25 29.34 30.68 32.28 34.38 37.65 40.65 41.57 44.31 46.93 49.44 52.62 54.
      • 26 30.43 31.79 33.43 35.56 38.89 41.92 42.86 45.64 48.29 50.83 54.05 56.
      • 27 31.53 32.91 34.57 36.74 40.11 43.19 44.14 46.96 49.64 52.22 55.48 57.
      • 28 32.62 34.03 35.71 37.92 41.34 44.46 45.42 48.28 50.99 53.59 56.89 59.
      • 29 33.71 35.14 36.85 39.09 42.56 45.72 46.69 49.59 52.34 54.97 58.30 60.
      • 30 34.80 36.25 37.99 40.26 43.77 46.98 47.96 50.89 53.67 56.33 59.70 62.
      • 40 45.62 47.27 49.24 51.81 55.76 59.34 60.44 63.69 66.77 69.70 73.40 76.
      • 50 56.33 58.16 60.35 63.17 67.50 71.42 72.61 76.15 79.49 82.66 86.66 89.
      • 60 66.98 68.97 71.34 74.40 79.08 83.30 84.58 88.38 91.95 95.34 99.61 102.
      • 80 88.13 90.41 93.11 96.58 101.9 106.6 108.1 112.3 116.3 120.1 124.8 128.
  • 100 109.1 111.7 114.7 118.5 124.3 129.6 131.1 135.8 140.2 144.3 149.4 153. - TABLES - n .20 .10 .05 .025 .02 .01 .005 .0025 .001. UPPER TAIL PROBABILITY p - 3 0.8090 0.9511 0.9877 0.9969 0.9980 0.9995 0.9999 1.0000 1.0000 1. - 4 0.6000 0.8000 0.9000 0.9500 0.9600 0.9800 0.9900 0.9950 0.9980 0. - 5 0.4919 0.6870 0.8054 0.8783 0.8953 0.9343 0.9587 0.9740 0.9859 0. - 6 0.4257 0.6084 0.7293 0.8114 0.8319 0.8822 0.9172 0.9417 0.9633 0. - 7 0.3803 0.5509 0.6694 0.7545 0.7766 0.8329 0.8745 0.9056 0.9350 0. - 8 0.3468 0.5067 0.6215 0.7067 0.7295 0.7887 0.8343 0.8697 0.9049 0. - 9 0.3208 0.4716 0.5822 0.6664 0.6892 0.7498 0.7977 0.8359 0.8751 0. - 10 0.2998 0.4428 0.5494 0.6319 0.6546 0.7155 0.7646 0.8046 0.8467 0. - 11 0.2825 0.4187 0.5214 0.6021 0.6244 0.6851 0.7348 0.7759 0.8199 0. - 12 0.2678 0.3981 0.4973 0.5760 0.5980 0.6581 0.7079 0.7496 0.7950 0. - 13 0.2552 0.3802 0.4762 0.5529 0.5745 0.6339 0.6835 0.7255 0.7717 0. - 14 0.2443 0.3646 0.4575 0.5324 0.5536 0.6120 0.6614 0.7034 0.7501 0. - 15 0.2346 0.3507 0.4409 0.5140 0.5347 0.5923 0.6411 0.6831 0.7301 0. - 16 0.2260 0.3383 0.4259 0.4973 0.5177 0.5742 0.6226 0.6643 0.7114 0. - 17 0.2183 0.3271 0.4124 0.4821 0.5021 0.5577 0.6055 0.6470 0.6940 0. - 18 0.2113 0.3170 0.4000 0.4683 0.4878 0.5425 0.5897 0.6308 0.6777 0. - 19 0.2049 0.3077 0.3887 0.4555 0.4747 0.5285 0.5751 0.6158 0.6624 0. - 20 0.1991 0.2992 0.3783 0.4438 0.4626 0.5155 0.5614 0.6018 0.6481 0. - 21 0.1938 0.2914 0.3687 0.4329 0.4513 0.5034 0.5487 0.5886 0.6346 0. - 22 0.1888 0.2841 0.3598 0.4227 0.4409 0.4921 0.5368 0.5763 0.6219 0. - 23 0.1843 0.2774 0.3515 0.4132 0.4311 0.4815 0.5256 0.5647 0.6099 0. - 24 0.1800 0.2711 0.3438 0.4044 0.4219 0.4716 0.5151 0.5537 0.5986 0. - 25 0.1760 0.2653 0.3365 0.3961 0.4133 0.4622 0.5052 0.5434 0.5879 0. - 26 0.1723 0.2598 0.3297 0.3882 0.4052 0.4534 0.4958 0.5336 0.5776 0. - 27 0.1688 0.2546 0.3233 0.3809 0.3976 0.4451 0.4869 0.5243 0.5679 0. - 28 0.1655 0.2497 0.3172 0.3739 0.3904 0.4372 0.4785 0.5154 0.5587 0. - 29 0.1624 0.2451 0.3115 0.3673 0.3835 0.4297 0.4705 0.5070 0.5499 0. - 30 0.1594 0.2407 0.3061 0.3610 0.3770 0.4226 0.4629 0.4990 0.5415 0. - 40 0.1368 0.2070 0.2638 0.3120 0.3261 0.3665 0.4026 0.4353 0.4741 0. - 50 0.1217 0.1843 0.2353 0.2787 0.2915 0.3281 0.3610 0.3909 0.4267 0. - 60 0.1106 0.1678 0.2144 0.2542 0.2659 0.2997 0.3301 0.3578 0.3912 0. - 80 0.0954 0.1448 0.1852 0.2199 0.2301 0.2597 0.2864 0.3109 0.3405 0.
    • 100 0.0851 0.1292 0.1654 0.1966 0.2058 0.2324 0.2565 0.2786 0.3054 0.
  • 1000 0.0266 0.0406 0.0520 0.0620 0.0650 0.0736 0.0814 0.0887 0.0976 0.
                    • 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 1. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 1. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 1. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 1. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 1. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 1. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 1. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 1. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 1. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 1. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 2. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 2. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 2. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 2. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 2. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 2. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 2. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 2. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 2. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 2. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 3. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 1. - 1. - 1. - 1. - 1. - 1. - 1. - 1. - 1. - 1. - 1. - 1. - 1. - 1. - 1. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 1. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 1. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 1. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 1. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 1. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 1. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 1. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 1. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 1. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 1. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 2. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 2. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 2. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 2. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 2. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 2. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 2. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 2. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 2. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 2. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 3. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0. - 0.