

Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
Taller Producto Interno Para Estudiar 2025
Typology: Study Guides, Projects, Research
1 / 3
This page cannot be seen from the preview
Don't miss anything!
Escuela de Matem´aticas Coordinaci´on Algebra Lineal II´
Transformaciones Lineales Taller N°5 - SEA
Verifique que T es una trasformaci´on lineal. Determine bases y las dimensiones R (T ) la imagen y N (T ) el nucleo o kernel de T. Determine si T es inyectiva, sobreyectiva, isomorfismo. a) T : R^3 → R^3 definida por: T (x, y, z) = (x + y + 2z, −x − 2 y − 2 z, 2 x − y + z). b) T : P 2 → P 2 definida por: T (p(x)) = p(x) + p′(x). c) T : R^3 → P 2 definida por: T (a, b, c) = (a − b) + (a + c)x + (b − c)x^2. d) T : P 2 → M 2 (R) definida por:
T (a + bx + cx^2 ) =
a b b c
e) T : M 2 (R) → M 2 (R) definida por: T (A) = A − At, donde At^ representa la matriz transpuesta de A. f ) T : M 2 (R) → M 2 (R) definida por: T (A) = A + At.
a) T : R^3 → R^2 , tal que, T (e 1 + e 2 ) = (1, 1), T (e 1 + e 3 ) = (2, 2), T (e 2 + e 3 ) = (3, 3). b) T : P 2 → R^2 tal que, T (1) = e 1 , T (x) = e 2 − e 1 , T (x^2 ) = e 2.
T (1, 1 , 1) = (1, 1) y T (1, 0 , 1) = (0, 1)?
a) T : R^2 → R^2 tal que, nuc(T) = {(x, y) ∈ R^2 | y = x}. b) T : R^2 → R^2 tal que, Img(T) = {(x, y) ∈ R^2 | x = 0}. c) T : R^3 → R^3 tal que, nuc(T) = {(x, y, z) ∈ R^3 | 2x − y + z = 0}. d) T : R^3 → R^3 tal que, Img(T) = {(x, y, z) ∈ R^3 | x + y + z = 0}.
e) T : R^2 → R^2 tal que, nuc(T) = Img(T) = {(x, y) ∈ R^2 | x + y = 0}.
T : P 2 −→ P 1 p (x) 7 −→ T (p (x)) = p′^ (x) , si β 1 = p 1 (x) = 1, p 2 (x) = x + 1, p 2 (x) = x^2 + 1 , β 2 = {q 1 (x) = x + 1, q 3 (x) = x + 2} son bases ordenadas de P 2 y P 1 respectivamente, calcule la matriz AT de la trasformaci´on T respecto a estas bases y verifique para cada p (x) ∈ P 2 : [T (p (x))]β 1 = AT [p (x)]β 2.
T : P 1 −→ P 2 p (x) 7 −→ T (p (x)) = xp (x) , si β 1 = {p 1 (x) = x + 1, p 2 (x) = x − 1 } , β 2 = q 1 (x) = x^2 + 1, q 2 (x) = x − 1 , q 3 (x) = x + 1 , son bases ordenadas de P 1 y P 2 respectivamente, calcule la matriz AT de la trasformaci´on T respecto a estas bases y verifique para cada p (x) ∈ P 1 : [T (p (x))]β 2 = AT [p (x)]β 1.
T (v 1 ) = v 1 − v 2 + 2v 3 , T (v 2 ) = 3 v 1 + 4v 2 + 2v 3 , T (v 3 ) = v 1 + v 2 + v 3 , determine la matriz que representa a T respecto a esta base.
T : Mn(R) −→ Mn(R) A 7 −→ T (A) = AB − BA a) Verifique que T es transformaci´on lineal, b) Determine nuc(T),