






Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
The estimation of covariance structures using toeplitz and unstructured models in sas. The toeplitz model assumes constant variance within years, while the unstructured model estimates all variances and covariances. The document also covers the use of likelihood ratio tests (lrt) and akaike and schwarz's bayesian criteria to determine the preferred model. Examples of simulations with missing data and their impact on model fit.
Typology: Study notes
1 / 12
This page cannot be seen from the preview
Don't miss anything!
Y_1 Y_2 Y_3 Y_4 Frequency Percent 1 2.. 29 31.
OBS I X1 X2 X3 X4 SBP1 SBP2 SBP3 SBP 1 1 0.31638 -0.67424 -0.64694 -0.01246 113.164 107.400 104.743 106. 2 2 0.74053 1.69465 1.83787 -0.76201 117.405 127.286 133.904 121. 3 3 0.03693 0.57211 0.44906 1.19068 110.369 114.344 115.596 122. 4 4 0.07798 1.79719 -0.60319 0.75104 110.780 123.380 113.308 119. 5 5 0.47511 -0.28478 -0.14342 -1.41015 114.751 111.292 110.734 100. 6 6 0.21429 -0.90276 -1.29990 -1.23686 112.143 105.053 98.682 94. 7 7 0.21891 0.83217 0.62192 -0.97202 112.189 117.475 118.913 109. 8 8 -0.30969 0.02179 -1.33388 0.92109 106.903 107.988 98.926 109. 9 9 -0.57588 0.17040 0.60636 -1.12974 104.241 107.186 111.441 102. 10 10 0.00854 -0.71012 0.39754 1.68386 110.085 104.988 110.039 120. 11 11 -0.47016 -0.85353 -0.45538 -0.30350 105.298 100.613 100.657 100. 12 12 -0.08329 0.40870 0.82735 -0.28795 109.167 112.336 116.872 112. 13 13 0.00831 -0.37762 -0.14332 -0.48013 110.083 107.361 107.570 104. 14 14 -0.51914 1.02922 0.82259 0.16446 104.809 113.716 116.657 115. 15 15 1.37881 2.02392 -1.34273 0.41042 123.788 134.105 116.845 121. CCCC
2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1
2 1 2 3 2 1 1 2 2 2 1 1 2 3 2 1
σ σ σ σ
σ σ σ σ
σ σ σ σ
σ σ σ σ
2 11 21 31 41 2 21 22 32 42 2 31 32 33 43 2 41 42 43 44
σ σ σ σ
σ σ σ σ
σ σ σ σ
σ σ σ σ
⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢⎣ ⎥⎦
procproc mixed data=mixed data=alltallt; class; class year;year; modelmodel^ sbpsbp=year;=year; repeated /type=repeated /type=covcov--structurestructure sub=i;sub=i; make 'fitting'make 'fitting' out=out=ftun&jftun&j;; makemake ‘‘CovParmsCovParms’’ out=out=cvun&jcvun&j;;
procproc mixed data=alltmixed data=allt;; classclass year;year; modelmodel sbpsbp=year;=year; repeated /type=repeated /type=cov-cov-structurestructure (^) sub=i;sub=i; make 'fitting'make 'fitting' out=ftun&jout=ftun&j;; makemake ‘‘CovParmsCovParms’’ out=cvun&jout=cvun&j;;
Y_1 Y_2 Y_3 Y_4 Frequency Percent 1 2.. 29 31.
1000 simulations - n= Tests of preferred models (%)
Data Structure Balanced Specified deletions (N=676) LRT CS 3.6 62. TOEP 92.2 34. UN 4.2 3. AIC CS 1.1 43. TOEP 93.0 49. UN 5.9 7. BIC CS 18.4 86. TOEP 81.6 13. UN 0.0 0.
Y_1 Y_2 Y_3 Y_4 Frequency Percent 1 2.. 29 31.
1000 simulations - 10% deletion Tests of preferred models (%)
Sample size n=150 n= LRT CS 0.8 0. TOEP 93.9 94. UN 5.3 5. AIC CS 0.0 0. TOEP 93.5 93. UN 6.5 6. BIC CS 8.7 4. TOEP 91.3 96. UN 0.0 0.
1000 simulations - 20% deletion Tests of preferred models (%)
Sample size n=150 n=185 n= LRT CS 3.3 1.2 0. TOEP 90.4 93.3 94. UN 6.3 5.5 5. AIC CS 1.1 0.3 0. TOEP 91.4 92.5 93. UN 7.5 7.2 6. BIC CS 21.7 12.8 4. TOEP 78.3 87.2 95. UN 0.0 0.0 0.
1000 simulations - 25% deletion Tests of preferred models (%)
Sample size n=150 n=225 n= LRT CS 5.2 0.9 0. TOEP 89.9 93.7 94. UN 4.9 5.4 4. AIC CS 2.2 0.1 0. TOEP 91.0 92.9 93. UN 6.8 7.0 6. BIC CS 27.4 10.5 6. TOEP 72.6 89.5 93. UN 0.0 0.0 0.
Optimal sample size for 10% deletion (n=185) 1000 simulations Tests of preferred models (%)
Missing data scenario CF2 CF3 CF4 LFU LRT CS 0.2 0.2 0.5 0. TOEP 94.0 94.7 93.9 94. UN 5.8 5.1 5.6 4. AIC CS 0.1 0.0 0.0 0. TOEP 93.1 93.4 93.3 93. UN 6.8 6.6 6.7 6. BIC CS 3.4 4.3 9.4 4. TOEP 96.6 95.7 90.6 95. UN 0.0 0.0 0.0 0.
Optimal sample size for 20% deletion (n=225) 1000 simulations Tests of preferred models (%)
Missing data scenario CF2 CF3 CF4 LFU LRT CS 0.0 0.0 4.6 1. TOEP 94.2 95.0 90.2 93. UN 5.8 5.0 5.2 5. AIC CS 0.0 0.0 1.2 0. TOEP 92.8 93.5 92.6 93. UN 7.2 6.5 6.2 6. BIC CS 2.6 2.4 27.6 9. TOEP 97.4 97.6 72.4 90. UN 0.0 0.0 0.0 0.
Optimal sample size for 25% deletion (n=250) 1000 simulations Tests of preferred models (%)
Missing data scenario LFU LRT CS 1. TOEP 93. UN 5. AIC CS 0. TOEP 93. UN 6. SBC CS 16. TOEP 83. UN 0.
1 110 100 70 60 48
2 110 70 100 70 60 ~ , 3 110 60 70 100 70
4 110 48 60 70 100
y
y y N y
y
⎡ ⎤ ⎡ ⎛ ⎞ ⎛ ⎞⎤ ⎢ ⎥ ⎢^ ⎜^ ⎟ ⎜^ ⎟⎥ = ⎢^ ⎥ ⎢^ ⎜^ ⎟ ⎜^ ⎟⎥ ⎢ ⎥ ⎢^ ⎜^ ⎟ ⎜^ ⎟⎥ ⎢ ⎥ ⎢^ ⎜ ⎟ ⎜ ⎟⎥ ⎣ ⎦ ⎢⎣^ ⎝ ⎠ ⎝ ⎠⎥⎦