Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

The Ultimate Cheat Sheet for Astrophysics Students, Cheat Sheet of Astrophysics

This complete cheat sheet contains key concepts, formulas, theorems of Physics, Astrophysics & Astronomy, Mathematics and Statistics.

Typology: Cheat Sheet

2019/2020

Uploaded on 10/23/2020

ekani
ekani 🇺🇸

4.7

(26)

265 documents

1 / 58

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
A Web of Worlds presents
The Ultimate Cheat Sheet for Astrophysics Students
Lachlan Marnoch
www.webofworlds.net
v 1.0
July 28, 2018
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17
pf18
pf19
pf1a
pf1b
pf1c
pf1d
pf1e
pf1f
pf20
pf21
pf22
pf23
pf24
pf25
pf26
pf27
pf28
pf29
pf2a
pf2b
pf2c
pf2d
pf2e
pf2f
pf30
pf31
pf32
pf33
pf34
pf35
pf36
pf37
pf38
pf39
pf3a

Partial preview of the text

Download The Ultimate Cheat Sheet for Astrophysics Students and more Cheat Sheet Astrophysics in PDF only on Docsity!

A Web of Worlds presents

The Ultimate Cheat Sheet for Astrophysics Students

Lachlan Marnoch

www.webofworlds.net

v 1.

July 28, 2018

Contents

  • 1 Physics
    • 1.1 Motion
      • 1.1.1 Velocity
      • 1.1.2 Acceleration
      • 1.1.3 Newton’s Laws
      • 1.1.4 Momentum
      • 1.1.5 Centripetal Force
      • 1.1.6 Kinetic Energy
      • 1.1.7 Projectile Motion
      • 1.1.8 Rotation
      • 1.1.9 Euler-Lagrange and the Hamiltonian
    • 1.2 Oscillations
      • 1.2.1 Springs
    • 1.3 Materials
      • 1.3.1 Density
    • 1.4 Energy
      • 1.4.1 Work
    • 1.5 Forces
      • 1.5.1 Buoyancy (Archimedes’ Principle)
      • 1.5.2 Friction
    • 1.6 Waves
      • 1.6.1 Wavelength
      • 1.6.2 Angular Frequency
    • 1.7 Newtonian Gravity
      • 1.7.1 Force of Gravity
      • 1.7.2 Gravitational Potential (potential energy per unit mass)
      • 1.7.3 Gravitational field
      • 1.7.4 Gravitational Potential Energy
      • 1.7.5 Kepler’s Third Law
    • 1.8 Electromagnetism
      • 1.8.1 Notation
      • 1.8.2 Maxwell’s Equations
      • 1.8.3 Lorentz Force
      • 1.8.4 Electric Field
      • 1.8.5 Dipole moment
      • 1.8.6 Electric potential
      • 1.8.7 Electric potential difference
      • 1.8.8 Electric potential energy
      • 1.8.9 Charge densities
      • 1.8.10 Current densities
      • 1.8.11 Circuits
      • 1.8.12 Capacitors
      • 1.8.13 Magnetic fields
      • 1.8.14 Inductors
      • 1.8.15 Materials
    • 1.9 Special Relativity
      • 1.9.1 Interval
      • 1.9.2 Four-vectors
      • 1.9.3 Frames of Reference
      • 1.9.4 Proper Velocity
    • 1.10 General Relativity
      • 1.10.1 Metrics
      • 1.10.2 Rindler coordinates
      • 1.10.3 Einstein notation
      • 1.10.4 Christoffel symbols
      • 1.10.5 Covariant derivatives
      • 1.10.6 Riemann curvature tensor
      • 1.10.7 Ricci curvature tensor
      • 1.10.8 Einstein’s equations
    • 1.11 Thermodynamics
      • 1.11.1 Ideal Gases
      • 1.11.2 Microstates
      • 1.11.3 Entropy
      • 1.11.4 Black bodies
    • 1.12 Quantum Mechanics
      • 1.12.1 The Uncertainty Principle
      • 1.12.2 Bras and Kets
      • 1.12.3 Rules for an Inner Product
      • 1.12.4 The Born Rule
      • 1.12.5 Expectation
      • 1.12.6 Variance
      • 1.12.7 Standard Deviation
      • 1.12.8 Trace
      • 1.12.9 Partial Trace
      • 1.12.10 The Schr¨odinger Equation
      • 1.12.11 Heisenberg equation of motion
      • 1.12.12 Operators
  • 2 Astrophysics & Astronomy
    • 2.1 Astrometry
      • 2.1.1 Redshift
      • 2.1.2 Apparent magnitude
      • 2.1.3 Absolute magnitude
      • 2.1.4 Relative magnitudes
      • 2.1.5 Flux-magnitude relationship
      • 2.1.6 Color
      • 2.1.7 Metallicity
    • 2.2 Stars
      • 2.2.1 Stellar Structure Equations
      • 2.2.2 Timescales
      • 2.2.3 Gravitational potential energy
      • 2.2.4 Eddington Limit (hydrostatic equilibrium)
      • 2.2.5 Mass-Luminosity Relationship
    • 2.3 Galaxies
      • 2.3.1 Hubble Eliptical Galaxy Classification
      • 2.3.2 S´ersic Profile
      • 2.3.3 Density of stars in the Milky Way Galaxy
    • 2.4 Black Holes
      • 2.4.1 Schwarszchild Radius
    • 2.5 Instrumentation
      • 2.5.1 Lensmaker’s equation
      • 2.5.2 Focal ratio / Focal number
      • 2.5.3 Field of view
      • 2.5.4 Resolution Limits
      • 2.5.5 Nyquist sampling
      • 2.5.6 Plate scale
      • 2.5.7 Fitting error
      • 2.5.8 Adaptive optics error
      • 2.5.9 Signal-to-noise ratio
      • 2.5.10 Atmospheric Extinction
      • 2.5.11 Rocket science
  • 3 Mathematics
    • 3.1 Notation
    • 3.2 Algebra
      • 3.2.1 Factorisation
      • 3.2.2 Absolute Value
      • 3.2.3 Quadratics
      • 3.2.4 Logarithms
      • 3.2.5 Vectors
      • 3.2.6 Factorials
      • 3.2.7 Inner product definition
      • 3.2.8 Complex Numbers
      • 3.2.9 Power Series
      • 3.2.10 Matrix Operations
      • 3.2.11 Matrix Types
      • 3.2.12 Change of Basis Unitary
      • 3.2.13 Commutator
      • 3.2.14 Anticommutator
      • 3.2.15 Cauchy-Schwarz Inequality
    • 3.3 Geometry
      • 3.3.1 Pythagorean theorem
      • 3.3.2 Properties of shapes
      • 3.3.3 Properties of solids
      • 3.3.4 Circular formulae
      • 3.3.5 Useful Functions
      • 3.3.6 Coordinates
      • 3.3.7 Hyperbolic Functions
    • 3.4 Trigonometry
      • 3.4.1 Identities
    • 3.5 Calculus
      • 3.5.1 Limits
      • 3.5.2 Properties
      • 3.5.3 Differentiation
      • 3.5.4 Partial Differentiation
      • 3.5.5 The Differential
      • 3.5.6 Line Element
      • 3.5.7 Integration
      • 3.5.8 Vector Calculus
      • 3.5.9 Dirac Delta Function
      • 3.5.10 Approximations
  • 4 Statistics
    • 4.1 Variance
    • 4.2 Standard Deviation
  • A Values
    • A.1 Physics
      • A.1.1 Physical Constants
      • A.1.2 Useful Quantities
    • A.2 Astronomy
      • A.2.1 Useful Quantities
    • A.3 Mathematics
  • B Units of Measurement
    • B.1 Natural Units
    • B.2 SI System
      • B.2.1 Base Units
      • B.2.2 Derived Units
    • B.3 CGS (centimetres-grams-seconds)
    • B.4 Astronomy units
      • B.4.1 Astronomical system
      • B.4.2 Equatorial Coordinate System
    • B.5 United States customary units (aka Imperial Units)
      • B.5.1 Length
    • B.6 Degrees of Angle
    • B.7 Miscellaneous Units
      • B.7.1 Pressure
    • B.8 Prefixes
  • C Mathematical Stuff
    • C.1 Trigonometric Values
      • C.1.1 Pythagorean Triples
  • D Boring stuff
    • D.1 Version History
    • D.2 Licensing
    • D.3 Contact
    • D.4 Credits

1.1.7 Projectile Motion

  • v^2 y = u^2 y + 2ay ∆y
  • x = uxt
  • ∆y = uy ∆t + 12 ay ∆t^2 = uy t + (^12)

Fy m

∆t^2

1.1.8 Rotation

Angular Velocity

  • ω =

dθ dt = θ˙

  • ω = v r
  • ~v = ~r × ~ω

Angular Acceleration

  • α = dω dt

d^2 θ dt^2

= ˙ω = θ¨

Moment of Inertia

Point Mass

  • I = mr^2

Several Point Masses

  • I =

mr^2

Continuous mass

  • I =

r^2 dm

Parallel axis theorem

  • I = Icom + md^2

Thin disc rotating about centre

• I =

M R^2

Thin hoop rotating about centre

  • I = M R^2

Thin rod rotating about centre

• I =

M L^2

Thin rod rotating about end

• I =

M L^2

Rotational Kinetic Energy

  • Krot = 12 Iω^2

Total Kinetic Energy

  • Ktot = Ktrans + Krot = 12 (mr^2 com + Icom)ω^2

Angular Momentum

  • L~ = I~ω = ~r × ~p

Torque

  • ~τ = I~α = dL dt

= ~r × F~

1.1.9 Euler-Lagrange and the Hamiltonian

Lagrangian

  • ` = T − V =

lm

a(q) ˙ql q˙m

  • = K( ˙ql) − U (ql)

Generalised coordinates & momenta

  • pk ≡

∂L

∂ q˙k

Euler-Lagrange Equation

d dt

∂`

∂ x˙

∂`

∂x

Action

  • S[x(t)] =

t´B

tA

`( ˙x(t), x(t)) dt

Hamiltonian

  • H =

l

pl q˙ − L

• P˙ = −

∂H

∂Q

• Q˙ =

∂H

∂P

  • P˙ = −ω^2 Q
  • Q˙ = P

1.2 Oscillations

1.2.1 Springs

Force of a Spring

  • F~ = −ks~x

Potential Energy of a Spring

  • Us =

ksx^2

Angular Frequency of a Spring

  • ω =

ks m

1.7.5 Kepler’s Third Law

T 2

r^3

4 π^2 G(m + M )

= constant

1.8 Electromagnetism

1.8.1 Notation

  • ~r = ~r − ~r′

1.8.2 Maxwell’s Equations

Integral form Differential form

Gauss’s Law

v S

E^ ~ · d~a = 1 ε 0

t V

ρ dV ∇ ·~ E~ =

ρ ε 0

Qenc ε 0

Gauss’s Law for Magnetism

v S

B^ ~ · d~a = 0 ∇ ·~ B~ = 0

Maxwell-Faraday equation

b

E^ ~ · d~l = − d dt

s S

B^ ~ · d~a ∇ ×~ E~ = − ∂

B~

∂t

Amp´ere’s circuital law

b

B^ ~ · d~l = μ 0

s S

J^ ~ · d~a + μ 0 ε 0 d dt

s S

E^ ~ · d~a ∇ ×~ B~ = μ 0 ( J~ + ε 0 ∂

E~

∂t

= μ 0 (Ienc + ε 0

d dt

S

E^ ~ · d~a)

1.8.3 Lorentz Force

On a point charge

  • F~ = q( E~ + ~v × B~)

On a current

  • d F~ = I

d~l × B~

  • F~ = IL~ × B~

1.8.4 Electric Field

• E~ =

V

ρ(r~′) r^2

ˆr dτ

From a single point charge

  • E~ =

4 πε 0

q r^2 ˆr

From a dipole

  • | E~axis| ≈

2 p 4 πε 0 r^3

  • | E~⊥| ≈

p 4 πε 0 r^3

1.8.5 Dipole moment

  • ~p = q d~

1.8.6 Electric potential

• V =

4 πε 0

Q

r

  • ∇^2 V =

−ρ ε 0

In a single-point charge field

  • ∆(~r) =

4 πε 0

q r

1.8.7 Electric potential difference

  • ∆(~r) = −

´^ ~a ~b

E^ ~ · d~l

In a single-point charge field

  • ∆(~r) =

4 πε 0

Q(

b

a

1.8.8 Electric potential energy

  • UE = q∆V =

4 πε 0

qQ r

Energy stored in an electrostatic field distribution

  • UE = 12 =  0 E^2 × volume

1.8.9 Charge densities

Surface

  • σ =

dq da

Q

A

Line

  • λ =

dq dl

Q

L

1.8.10 Current densities

Volume

  • J~ =

d~I d~a⊥

I

A⊥

= σ( E~ + ~v × B) = |q|nu( E~ + ~v × B)

• ∇ ·~ J~ = 0

1.8.13 Magnetic fields

  • B~(~r) = μ 0 4 π

´ (^) I~ × ˆr r^2

dl

  • d B~ =

μ 0 4 π

q~v × rˆ r^2

μ 0 4 π

I d~l × rˆ r^2

Magnetic field due to a wire

  • B~ =

μ 0 4 π

2 I

r φˆ

Magnetic vector potential

  • A~(~r) =

μ 0 4 π

´ (^) J~(r~′) r

• ∇ ×~ A~ = B~

  • ∇ ×~ (∇ ×~ A~) = −μ 0 J~
  • ∇ ·~ A~ = 0

1.8.14 Inductors

  • ε = −LI

Energy stored in an inductor

  • W =

LI^2

1.8.15 Materials

Macroscopic Maxwell’s Equations (Materials)

Integral form Differential form

Gauss’s Laws

v S

P^ ~ · d~a = − ∑^ QB ∇ ·~ P~ = −ρB

v S

D^ ~ · d~a = ∑^ Qf ∇ ·~ D~ = ρf

Gauss’s Law for Magnetism

v S

B^ ~ · d~a = 0 ∇ ·~ B~ = 0

Maxwell-Faraday equation

b

E^ ~ · d~l = − d dt

s S

B^ ~ · d~a ∇ ×~ E~ = − ∂

B~

∂t

Amp´ere’s circuital law

b

H^ ~ · d~l = If,enc + ∂ ∂t

s S

D^ ~ · d~a ∇ ×~ H~ = J~f + ∂

D~

∂t

Dielectric constant

  • k =

ε ε 0

= εr

  • ε = kε 0 = εr ε

Susceptibility

  • χe = 1 − εr

Polarisability

  • P~ = ε 0 χe E~ = n~p

Bound Charge

Surface

  • σB = ~p · nˆ

Volume

  • ρB = −∇ ·~ P~

Total

  • QB = σB + ρB = ~p · ˆn − ∇ ·~ P~

Electric displacement

  • D~ = ε E~ = kε 0 E~ = ε 0 E~ + P~

Magnetic field

• H~ =

B~

μ 0

− M~

Magnetic dipole

  • m~ = I~a

Bound current

  • J~B = ∇ ×~ M~
  • K~B = M~ × ˆn

1.9 Special Relativity

1.9.1 Interval

  • ∆s^2 = −c^2 ∆t^2 + ∆x^2 + ∆y^2 + ∆z^2
  • ds^2 = −c^2 dt^2 + dx^2 + dy^2 + dz^2
  • ∆s^2 < 0 is a timelike interval. Events separated by this interval can be causally related.
  • ∆s^2 = 0 is a lightlike interval. Events separated by this interval can be causally related, but only by a lightspeed signal.
  • ∆s^2 > 0 is a spacelike interval. Events separated by this interval CANNOT be causally related.

Gamma Factor

  • γ =

v c

)^2

  • γ =

dt dτ

1.9.3 Frames of Reference

Condition for an inertial frame

d^2 x dt^2

d^2 y dt^2

d^2 z dt^2

Galilean Transformations

  • x′^ = x + vt
  • y′^ = y
  • z′^ = z
  • All assuming x is along the axis of motion and x = x’ when t = 0.

Lorentz Boosts

  • t′^ = γ(t −

vx c^2

  • x′^ = γ(x − vt)
  • y′^ = y
  • z′^ = z
  • (x is along the axis of motion)

ct′ x′ y′ z′

γ −vγ 0 0 −vγ γ 0 0 0 0 1 0 0 0 0 1

ct x y z

General Lorentz transformation

b′^0 b′^1 b′^2 b′^3

γ −vγ 0 0 −vγ γ 0 0 0 0 1 0 0 0 0 1

b^0 b^1 b^2 b^3

  • Motion along the x-axis.

Proper Time

  • τ =

t´B

tA

γ

dt =

t´B

tA

v^2 (t) c^2

dt

1.9.4 Proper Velocity

  • u =

ds dτ

1.10 General Relativity

1.10.1 Metrics

Minkowski

  • η =
  • ds^2 = −c^2 dt^2 + dx^2 + dy^2 + dz^2

Schwarzschild

  • g =

2 GM

c^2 r

2 GM

c^2 r

)−^1 0

0 0 r^2 0 0 0 r^2 sin^2 θ

  • ds^2 = −(1 −

2 GM

c^2 r

)c^2 dt^2 + (1 −

2 GM

c^2 r

)−^1 dr^2 + r^2 dθ^2 + r^2 sin^2 θ dφ^2 )

1.10.2 Rindler coordinates

Line element

  • ds^2 = −(1 +

gx′ c^2

)^2 (c dt′)^2 + dx′

1.10.3 Einstein notation

  • Contravariant: eα
  • Covariant: eα
  • tαβ = gβγ tαγ
  • tαβ^ = gβγ^ tαγ
  • t′αβ =

∂x′α ∂xγ

∂xδ ∂x′β^

tγ δ

  • t′ αβ^ =

∂xγ ∂x′α

∂x′β ∂xδ^

tγ δ

Metrics

  • ds^2 = gαβ dxα^ dxβ
  • gαβ^ =

gαβ

  • δαβ =

1 α = β 1 α 6 = β

  • δαγ aγ^ = aα
  • gαγ^ gγβ = δβα

Four-vector product

  • a · b = gαβ aαbβ^ = aβ bα

1.10.4 Christoffel symbols

  • Γαβγ = 12 gαδ^ (

∂gδβ ∂xγ^

∂gδγ ∂xβ^

∂gβγ ∂xδ^

  • Γαβγ = 12 (

∂gδβ ∂xγ^

∂gδγ ∂xβ^

∂gβγ ∂xδ^

d^2 xμ dτ

  • Γμαβ

dxα dτ

dxβ dτ

1.11.3 Entropy

  • S = kB ln Ω

1.11.4 Black bodies

Energy of a photon

  • E = hf

Wien’s Displacement Law

  • λmax =

b T

= (2. 8977729 × 10 −^3 )

T

Stefan-Boltzmann Law

  • I = σT 4

Spectrum

  • Bλ(T ) = 2 hc^2 λ^5

exp(

hc λkB T

  • Bν (T ) =

2 hν c^2

exp( hν kB T

1.12 Quantum Mechanics

1.12.1 The Uncertainty Principle

  • ∆x∆p ≥

¯h 2

  • ∆E∆t ≥ ¯h 2

1.12.2 Bras and Kets

  • |ψ〉 = 〈ψ|†

1.12.3 Rules for an Inner Product

  • 〈ψ|φ〉 ≡ (|ψ〉, |φ〉)
  • Symmetric: 〈ψ|φ〉 = 〈φ|ψ〉∗
  • Linear in second component
  • Anti-linear in first component

1.12.4 The Born Rule

  • P = |〈ψ|ψ〉|^2

1.12.5 Expectation

• 〈A〉 =

A|Ψ(x, t)|^2 dx

  • 〈A〉 = 〈ψ|A|ψ〉

1.12.6 Variance

  • var(A) = 〈ψ|A^2 |ψ〉 − 〈ψ|A|ψ〉 2

1.12.7 Standard Deviation

  • δA =

var(A) =

〈ψ|A^2 |ψ〉 − 〈ψ|A|ψ〉^2

1.12.8 Trace

  • Tr(A) =

j

〈xj |A|xj 〉

1.12.9 Partial Trace

  • T rB (|a〉〈a| ⊗ |b〉〈b|) ≡ |a〉〈a|Tr(|b〉〈b|)
  • Tr(kAB ) = T rA(T rB (kAB )) = T rB (T rA(kAB ))
  • ρB = T rA(ρAB )
  • The partial trace is linear

1.12.10 The Schr¨odinger Equation

  • i¯h

∂t

Ψ(r, t) = HˆΨ(r, t)

¯h^2 2 m

∂^2 Ψ(x, t) ∂x^2

  • V (x)Ψ(x, t) = i¯h

∂Ψ(x, t) ∂t

¯h^2 2 m

∂^2 ψ(x) ∂x^2

  • V (x)ψ(x, t) = Eψ(x)
  • Hˆ|Ψ(t)〉 = i¯h

∂t

|Ψ(t)〉

1.12.11 Heisenberg equation of motion

d dt

Aˆ(t) = i ¯h

[ H,ˆ Aˆ(t)]

1.12.12 Operators

  • ajk = 〈j|A|k〉

Diagonalizable Operator

  • A =

j

λj |λj 〉〈λj |

Normal Operator

  • A =

j

|λj 〉〈λj |

Eigenstate Operators

  • (|λk〉〈λk|)n^ = |λk〉〈λk|

Identity

  • I =

j

|xj 〉〈xj |