Download The Ultimate Cheat Sheet for Astrophysics Students and more Cheat Sheet Astrophysics in PDF only on Docsity!
A Web of Worlds presents
The Ultimate Cheat Sheet for Astrophysics Students
Lachlan Marnoch
www.webofworlds.net
v 1.
July 28, 2018
Contents
- 1 Physics
- 1.1 Motion
- 1.1.1 Velocity
- 1.1.2 Acceleration
- 1.1.3 Newton’s Laws
- 1.1.4 Momentum
- 1.1.5 Centripetal Force
- 1.1.6 Kinetic Energy
- 1.1.7 Projectile Motion
- 1.1.8 Rotation
- 1.1.9 Euler-Lagrange and the Hamiltonian
- 1.2 Oscillations
- 1.3 Materials
- 1.4 Energy
- 1.5 Forces
- 1.5.1 Buoyancy (Archimedes’ Principle)
- 1.5.2 Friction
- 1.6 Waves
- 1.6.1 Wavelength
- 1.6.2 Angular Frequency
- 1.7 Newtonian Gravity
- 1.7.1 Force of Gravity
- 1.7.2 Gravitational Potential (potential energy per unit mass)
- 1.7.3 Gravitational field
- 1.7.4 Gravitational Potential Energy
- 1.7.5 Kepler’s Third Law
- 1.8 Electromagnetism
- 1.8.1 Notation
- 1.8.2 Maxwell’s Equations
- 1.8.3 Lorentz Force
- 1.8.4 Electric Field
- 1.8.5 Dipole moment
- 1.8.6 Electric potential
- 1.8.7 Electric potential difference
- 1.8.8 Electric potential energy
- 1.8.9 Charge densities
- 1.8.10 Current densities
- 1.8.11 Circuits
- 1.8.12 Capacitors
- 1.8.13 Magnetic fields
- 1.8.14 Inductors
- 1.8.15 Materials
- 1.9 Special Relativity
- 1.9.1 Interval
- 1.9.2 Four-vectors
- 1.9.3 Frames of Reference
- 1.9.4 Proper Velocity
- 1.10 General Relativity
- 1.10.1 Metrics
- 1.10.2 Rindler coordinates
- 1.10.3 Einstein notation
- 1.10.4 Christoffel symbols
- 1.10.5 Covariant derivatives
- 1.10.6 Riemann curvature tensor
- 1.10.7 Ricci curvature tensor
- 1.10.8 Einstein’s equations
- 1.11 Thermodynamics
- 1.11.1 Ideal Gases
- 1.11.2 Microstates
- 1.11.3 Entropy
- 1.11.4 Black bodies
- 1.12 Quantum Mechanics
- 1.12.1 The Uncertainty Principle
- 1.12.2 Bras and Kets
- 1.12.3 Rules for an Inner Product
- 1.12.4 The Born Rule
- 1.12.5 Expectation
- 1.12.6 Variance
- 1.12.7 Standard Deviation
- 1.12.8 Trace
- 1.12.9 Partial Trace
- 1.12.10 The Schr¨odinger Equation
- 1.12.11 Heisenberg equation of motion
- 1.12.12 Operators
- 2 Astrophysics & Astronomy
- 2.1 Astrometry
- 2.1.1 Redshift
- 2.1.2 Apparent magnitude
- 2.1.3 Absolute magnitude
- 2.1.4 Relative magnitudes
- 2.1.5 Flux-magnitude relationship
- 2.1.6 Color
- 2.1.7 Metallicity
- 2.2 Stars
- 2.2.1 Stellar Structure Equations
- 2.2.2 Timescales
- 2.2.3 Gravitational potential energy
- 2.2.4 Eddington Limit (hydrostatic equilibrium)
- 2.2.5 Mass-Luminosity Relationship
- 2.3 Galaxies
- 2.3.1 Hubble Eliptical Galaxy Classification
- 2.3.2 S´ersic Profile
- 2.3.3 Density of stars in the Milky Way Galaxy
- 2.4 Black Holes
- 2.4.1 Schwarszchild Radius
- 2.5 Instrumentation
- 2.5.1 Lensmaker’s equation
- 2.5.2 Focal ratio / Focal number
- 2.5.3 Field of view
- 2.5.4 Resolution Limits
- 2.5.5 Nyquist sampling
- 2.5.6 Plate scale
- 2.5.7 Fitting error
- 2.5.8 Adaptive optics error
- 2.5.9 Signal-to-noise ratio
- 2.5.10 Atmospheric Extinction
- 2.5.11 Rocket science
- 3 Mathematics
- 3.1 Notation
- 3.2 Algebra
- 3.2.1 Factorisation
- 3.2.2 Absolute Value
- 3.2.3 Quadratics
- 3.2.4 Logarithms
- 3.2.5 Vectors
- 3.2.6 Factorials
- 3.2.7 Inner product definition
- 3.2.8 Complex Numbers
- 3.2.9 Power Series
- 3.2.10 Matrix Operations
- 3.2.11 Matrix Types
- 3.2.12 Change of Basis Unitary
- 3.2.13 Commutator
- 3.2.14 Anticommutator
- 3.2.15 Cauchy-Schwarz Inequality
- 3.3 Geometry
- 3.3.1 Pythagorean theorem
- 3.3.2 Properties of shapes
- 3.3.3 Properties of solids
- 3.3.4 Circular formulae
- 3.3.5 Useful Functions
- 3.3.6 Coordinates
- 3.3.7 Hyperbolic Functions
- 3.4 Trigonometry
- 3.5 Calculus
- 3.5.1 Limits
- 3.5.2 Properties
- 3.5.3 Differentiation
- 3.5.4 Partial Differentiation
- 3.5.5 The Differential
- 3.5.6 Line Element
- 3.5.7 Integration
- 3.5.8 Vector Calculus
- 3.5.9 Dirac Delta Function
- 3.5.10 Approximations
- 4 Statistics
- 4.1 Variance
- 4.2 Standard Deviation
- A Values
- A.1 Physics
- A.1.1 Physical Constants
- A.1.2 Useful Quantities
- A.2 Astronomy
- A.3 Mathematics
- B Units of Measurement
- B.1 Natural Units
- B.2 SI System
- B.2.1 Base Units
- B.2.2 Derived Units
- B.3 CGS (centimetres-grams-seconds)
- B.4 Astronomy units
- B.4.1 Astronomical system
- B.4.2 Equatorial Coordinate System
- B.5 United States customary units (aka Imperial Units)
- B.6 Degrees of Angle
- B.7 Miscellaneous Units
- B.8 Prefixes
- C Mathematical Stuff
- C.1 Trigonometric Values
- C.1.1 Pythagorean Triples
- D Boring stuff
- D.1 Version History
- D.2 Licensing
- D.3 Contact
- D.4 Credits
1.1.7 Projectile Motion
- v^2 y = u^2 y + 2ay ∆y
- x = uxt
- ∆y = uy ∆t + 12 ay ∆t^2 = uy t + (^12)
Fy m
∆t^2
1.1.8 Rotation
Angular Velocity
dθ dt = θ˙
Angular Acceleration
d^2 θ dt^2
= ˙ω = θ¨
Moment of Inertia
Point Mass
Several Point Masses
mr^2
Continuous mass
r^2 dm
Parallel axis theorem
Thin disc rotating about centre
• I =
M R^2
Thin hoop rotating about centre
Thin rod rotating about centre
• I =
M L^2
Thin rod rotating about end
• I =
M L^2
Rotational Kinetic Energy
Total Kinetic Energy
- Ktot = Ktrans + Krot = 12 (mr^2 com + Icom)ω^2
Angular Momentum
Torque
= ~r × F~
1.1.9 Euler-Lagrange and the Hamiltonian
Lagrangian
lm
a(q) ˙ql q˙m
Generalised coordinates & momenta
∂L
∂ q˙k
Euler-Lagrange Equation
d dt
∂`
∂ x˙
∂`
∂x
Action
t´B
tA
`( ˙x(t), x(t)) dt
Hamiltonian
l
pl q˙ − L
• P˙ = −
∂H
∂Q
• Q˙ =
∂H
∂P
1.2 Oscillations
1.2.1 Springs
Force of a Spring
Potential Energy of a Spring
ksx^2
Angular Frequency of a Spring
ks m
1.7.5 Kepler’s Third Law
T 2
r^3
4 π^2 G(m + M )
= constant
1.8 Electromagnetism
1.8.1 Notation
1.8.2 Maxwell’s Equations
Integral form Differential form
Gauss’s Law
v S
E^ ~ · d~a = 1 ε 0
t V
ρ dV ∇ ·~ E~ =
ρ ε 0
Qenc ε 0
Gauss’s Law for Magnetism
v S
B^ ~ · d~a = 0 ∇ ·~ B~ = 0
Maxwell-Faraday equation
b
E^ ~ · d~l = − d dt
s S
B^ ~ · d~a ∇ ×~ E~ = − ∂
B~
∂t
Amp´ere’s circuital law
b
B^ ~ · d~l = μ 0
s S
J^ ~ · d~a + μ 0 ε 0 d dt
s S
E^ ~ · d~a ∇ ×~ B~ = μ 0 ( J~ + ε 0 ∂
E~
∂t
= μ 0 (Ienc + ε 0
d dt
S
E^ ~ · d~a)
1.8.3 Lorentz Force
On a point charge
On a current
d~l × B~
1.8.4 Electric Field
• E~ =
V
ρ(r~′) r^2
ˆr dτ
From a single point charge
4 πε 0
q r^2 ˆr
From a dipole
2 p 4 πε 0 r^3
p 4 πε 0 r^3
1.8.5 Dipole moment
1.8.6 Electric potential
• V =
4 πε 0
Q
r
−ρ ε 0
In a single-point charge field
4 πε 0
q r
1.8.7 Electric potential difference
´^ ~a ~b
E^ ~ · d~l
In a single-point charge field
4 πε 0
Q(
b
a
1.8.8 Electric potential energy
4 πε 0
qQ r
Energy stored in an electrostatic field distribution
1.8.9 Charge densities
Surface
dq da
Q
A
Line
dq dl
Q
L
1.8.10 Current densities
Volume
d~I d~a⊥
I
A⊥
= σ( E~ + ~v × B) = |q|nu( E~ + ~v × B)
• ∇ ·~ J~ = 0
1.8.13 Magnetic fields
´ (^) I~ × ˆr r^2
dl
μ 0 4 π
q~v × rˆ r^2
μ 0 4 π
I d~l × rˆ r^2
Magnetic field due to a wire
μ 0 4 π
2 I
r φˆ
Magnetic vector potential
μ 0 4 π
´ (^) J~(r~′) r
dτ
• ∇ ×~ A~ = B~
- ∇ ×~ (∇ ×~ A~) = −μ 0 J~
- ∇ ·~ A~ = 0
1.8.14 Inductors
Energy stored in an inductor
LI^2
1.8.15 Materials
Macroscopic Maxwell’s Equations (Materials)
Integral form Differential form
Gauss’s Laws
v S
P^ ~ · d~a = − ∑^ QB ∇ ·~ P~ = −ρB
v S
D^ ~ · d~a = ∑^ Qf ∇ ·~ D~ = ρf
Gauss’s Law for Magnetism
v S
B^ ~ · d~a = 0 ∇ ·~ B~ = 0
Maxwell-Faraday equation
b
E^ ~ · d~l = − d dt
s S
B^ ~ · d~a ∇ ×~ E~ = − ∂
B~
∂t
Amp´ere’s circuital law
b
H^ ~ · d~l = If,enc + ∂ ∂t
s S
D^ ~ · d~a ∇ ×~ H~ = J~f + ∂
D~
∂t
Dielectric constant
ε ε 0
= εr
Susceptibility
Polarisability
Bound Charge
Surface
Volume
Total
- QB = σB + ρB = ~p · ˆn − ∇ ·~ P~
Electric displacement
- D~ = ε E~ = kε 0 E~ = ε 0 E~ + P~
Magnetic field
• H~ =
B~
μ 0
− M~
Magnetic dipole
Bound current
- J~B = ∇ ×~ M~
- K~B = M~ × ˆn
1.9 Special Relativity
1.9.1 Interval
- ∆s^2 = −c^2 ∆t^2 + ∆x^2 + ∆y^2 + ∆z^2
- ds^2 = −c^2 dt^2 + dx^2 + dy^2 + dz^2
- ∆s^2 < 0 is a timelike interval. Events separated by this interval can be causally related.
- ∆s^2 = 0 is a lightlike interval. Events separated by this interval can be causally related, but only by a lightspeed signal.
- ∆s^2 > 0 is a spacelike interval. Events separated by this interval CANNOT be causally related.
Gamma Factor
v c
)^2
dt dτ
1.9.3 Frames of Reference
Condition for an inertial frame
d^2 x dt^2
d^2 y dt^2
d^2 z dt^2
Galilean Transformations
- x′^ = x + vt
- y′^ = y
- z′^ = z
- All assuming x is along the axis of motion and x = x’ when t = 0.
Lorentz Boosts
vx c^2
- x′^ = γ(x − vt)
- y′^ = y
- z′^ = z
- (x is along the axis of motion)
ct′ x′ y′ z′
γ −vγ 0 0 −vγ γ 0 0 0 0 1 0 0 0 0 1
ct x y z
General Lorentz transformation
b′^0 b′^1 b′^2 b′^3
γ −vγ 0 0 −vγ γ 0 0 0 0 1 0 0 0 0 1
b^0 b^1 b^2 b^3
Proper Time
t´B
tA
γ
dt =
t´B
tA
v^2 (t) c^2
dt
1.9.4 Proper Velocity
ds dτ
1.10 General Relativity
1.10.1 Metrics
Minkowski
- ds^2 = −c^2 dt^2 + dx^2 + dy^2 + dz^2
Schwarzschild
2 GM
c^2 r
2 GM
c^2 r
)−^1 0
0 0 r^2 0 0 0 r^2 sin^2 θ
2 GM
c^2 r
)c^2 dt^2 + (1 −
2 GM
c^2 r
)−^1 dr^2 + r^2 dθ^2 + r^2 sin^2 θ dφ^2 )
1.10.2 Rindler coordinates
Line element
gx′ c^2
)^2 (c dt′)^2 + dx′
1.10.3 Einstein notation
- Contravariant: eα
- Covariant: eα
- tαβ = gβγ tαγ
- tαβ^ = gβγ^ tαγ
- t′αβ =
∂x′α ∂xγ
∂xδ ∂x′β^
tγ δ
∂xγ ∂x′α
∂x′β ∂xδ^
tγ δ
Metrics
- ds^2 = gαβ dxα^ dxβ
- gαβ^ =
gαβ
1 α = β 1 α 6 = β
- δαγ aγ^ = aα
- gαγ^ gγβ = δβα
Four-vector product
- a · b = gαβ aαbβ^ = aβ bα
1.10.4 Christoffel symbols
∂gδβ ∂xγ^
∂gδγ ∂xβ^
∂gβγ ∂xδ^
∂gδβ ∂xγ^
∂gδγ ∂xβ^
∂gβγ ∂xδ^
d^2 xμ dτ
dxα dτ
dxβ dτ
1.11.3 Entropy
1.11.4 Black bodies
Energy of a photon
Wien’s Displacement Law
b T
= (2. 8977729 × 10 −^3 )
T
Stefan-Boltzmann Law
Spectrum
exp(
hc λkB T
2 hν c^2
exp( hν kB T
1.12 Quantum Mechanics
1.12.1 The Uncertainty Principle
¯h 2
1.12.2 Bras and Kets
1.12.3 Rules for an Inner Product
- 〈ψ|φ〉 ≡ (|ψ〉, |φ〉)
- Symmetric: 〈ψ|φ〉 = 〈φ|ψ〉∗
- Linear in second component
- Anti-linear in first component
1.12.4 The Born Rule
1.12.5 Expectation
• 〈A〉 =
A|Ψ(x, t)|^2 dx
1.12.6 Variance
- var(A) = 〈ψ|A^2 |ψ〉 − 〈ψ|A|ψ〉 2
1.12.7 Standard Deviation
var(A) =
〈ψ|A^2 |ψ〉 − 〈ψ|A|ψ〉^2
1.12.8 Trace
j
〈xj |A|xj 〉
1.12.9 Partial Trace
- T rB (|a〉〈a| ⊗ |b〉〈b|) ≡ |a〉〈a|Tr(|b〉〈b|)
- Tr(kAB ) = T rA(T rB (kAB )) = T rB (T rA(kAB ))
- ρB = T rA(ρAB )
- The partial trace is linear
1.12.10 The Schr¨odinger Equation
∂t
Ψ(r, t) = HˆΨ(r, t)
¯h^2 2 m
∂^2 Ψ(x, t) ∂x^2
∂Ψ(x, t) ∂t
¯h^2 2 m
∂^2 ψ(x) ∂x^2
∂t
|Ψ(t)〉
1.12.11 Heisenberg equation of motion
d dt
Aˆ(t) = i ¯h
[ H,ˆ Aˆ(t)]
1.12.12 Operators
Diagonalizable Operator
j
λj |λj 〉〈λj |
Normal Operator
j
|λj 〉〈λj |
Eigenstate Operators
Identity
j
|xj 〉〈xj |